K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

10 tháng 8 2020

\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\( < =>2\left[x\left(x^2+4x+4\right)-\left(2x\right)^2\right]=2\left(x^3-8\right)\)

\(< =>x^3+4x^2+4x-4x^2=x^3-8\)

\(< =>4x=-8< =>x=-2\)

10 tháng 8 2020

Bài làm:

Ta có: \(B=2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8x=-16\)

\(\Rightarrow x=-2\)

10 tháng 8 2020

\(A=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)-13\)

\(A=\left(x-3\right)^2+\left(y+2\right)^2-13\)

Có: \(\left(x-3\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=> \(\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)

=> \(A\ge-13\)

<=> xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Vậy A min = -13 <=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

10 tháng 8 2020

x2 + y2 - 6x + 4y

= ( x2 - 6x + 9 ) + ( y2 + 4y + 4 ) - 9 - 4

= ( x - 3 )2 + ( y + 2 )2 - 13

\(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Vậy GTNN của biểu thức = -13, đạt được khi x = 3 và y = -2

Không chắc nha ;-;

10 tháng 8 2020

Bài làm:

Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40-72=0\)

\(\Leftrightarrow x^4-14x^2-32=0\)

\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)

Mà \(x^2+2\ge2>0\left(\forall x\right)\)

\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)

10 tháng 8 2020

( x + 2 )( x - 2 )( x2 - 10 ) = 72

<=> ( x2 - 4 )( x2 - 10 ) = 72

<=> x4 - 14x2 + 40 - 72 = 0

<=> x4 - 14x2 - 32 = 0

Đặt t = x2 ( \(t\ge0\))

Pt <=> t2 - 14t - 32 = 0

     <=> t2 + 2t - 16t - 32 = 0

     <=> t( t + 2 ) - 16( t + 2 ) = 0

     <=> ( t - 16 )( t + 2 ) = 0

     <=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)

\(t\ge0\Rightarrow t=16\)

=> x2 = 16

=> \(x=\pm4\)

10 tháng 8 2020

Gọi giao của AC và BD là M

Xét t/g ABM có AM + BM > AB (1)

Xét t/g DCM có DM +MC > DC (2)

Cộng (1) và (2) ta có:

AM +MC + BM +DM > AB + CD

hay AC + BD > AB + CD(đpcm)

10 tháng 8 2020

Xét \(\Delta\)ABC có: E, I là trung điểm AB, BC

\(\Rightarrow\) EI là đường trung bình tam giác ABC

\(\Rightarrow\) EI//AC, EI=1/2AC

Chứng minh tương tự: MK//AC, MK=1/2AC

\(\Rightarrow\) EI//MK, EI=MK

\(\Rightarrow\) tứ giác EIKM là hình bình hành (1)

ta có: EA=EB, \(\widehat{A}\)=\(\widehat{B}\), BI=MA(do AD=BC)

\(\Rightarrow\) \(\Delta\)AEM=\(\Delta\)BEI

\(\Rightarrow\) EM=EI(2)

Từ (1), (2)

\(\Rightarrow\) tứ giác EIKM là hình thoi

Để hình thoi EIKM là hình vuông thì EM\(\perp\)EI
\(\Rightarrow\) AC⊥BD
\(\Rightarrow\) hình thang ABCD có 2 đường chéo vuông góc với nhau
Vậy hình thang ABCD có đường chéo vuông góc với nhau thì EIKM là hình vuông.

#Shinobu Cừu

10 tháng 8 2020

Dễ thấy a,b,c là độ dài của tam giác nên

a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0

Theo Cauchy-Schwarz thì

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi a=b=c = 1

10 tháng 8 2020

Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3

Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

Tương tự CM được:

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng vế 3 BĐT trên lại ta được:

\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi: \(a=b=c\)

10 tháng 8 2020

lm trên symbolab (symbolab.com)

10 tháng 8 2020

Bài làm:

Đặt \(x+4=y\)

\(Pt\Leftrightarrow\left(y-1\right)^4+\left(y+1\right)^4=2\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1-2=0\)

\(\Leftrightarrow2y^4+12y^2=0\)

\(\Leftrightarrow2y^2\left(y^2+6\right)=0\)

Mà \(y^2+6\ge6>0\left(\forall y\right)\)

\(\Rightarrow y^2=0\Leftrightarrow y=0\Leftrightarrow x+4=0\Rightarrow x=-4\)

Vậy \(x=-4\)

10 tháng 8 2020

Đặt: x -1 = a; x + 2 = b

=> 2x + 1 = a + b

=> Ta có pt mới: 

\(a^3+b^3=\left(a+b\right)^3\)

<=> \(3ab\left(a+b\right)=0\)

<=> \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)hoặc a + b = 0

=> x-1=0 hoặc x+2=0 hoặc 2x+1=0

<=> x=1 hoặc x=-2 hoặc x=-1/2.

10 tháng 8 2020

<=> [(x-1)+(x+2)].[(x-1)2 - (x-1).(x+2) + (x+2)2 ] = (2x+1)2 

<=> (2x+1).[x2 -2x+1-(x2 -x-2)+x2 +4x+4] = (2x+1)3 

<=> x2 -2x+1-x2 +x+2+x2 +4x+4 = 4x2 +4x+1 (x khác -1/2)

<=> 3x2 +x-6=0 đến đây là PT bậc 2 rồi bạn tự làm nốt

10 tháng 8 2020

Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)

\(< =>A>B\)

10 tháng 8 2020

a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)

\(\Rightarrow A< B\)

b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

...

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow A>B\)

c,d tương tự