Tìm x, biết:
m đc câu nào thì lm nhé, làm được hết thì mình cảm ơn nhiều ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2-1\right)^3-\left(a^4+a^2+1\right)\left(a^2-1\right)\)
\(=a^6-3a^4+3a^2-1-\left(a^6-a^4+a^4-a^2+a^2-1\right)\)
\(=a^6-3a^4+3a^2-1-a^6+1\)
\(=-3a^4+3a^2\)
\(=-3a^2\left(a^2-1\right)\)
\(=-3a^2\left(a+1\right)\left(a-1\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-4\left(a^3+b^3+c^3\right)-12abc\)
\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-12abc\)
\(=-3\left(\left(a^3+b^3+c^3\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc\right)\)
XONG NHAAAAA :3333333
a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)
b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)
a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)
\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương
=> đpcm
Ta có :
b = 22222...22222 ( n chữ số 2 ) = 2m
a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )
\(=\left(9m+1\right)m+m=9m^2+2m\)
Lấy vế a trừ vế b ta được \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP
=> Đpcm
a) ( x - 3 )( x + 3 )( x + 2 ) - ( x - 1 )( x2 - 3 ) - 5x( x + 4 )2 - ( x - 5 )2
= ( x2 - 32 )( x + 2 ) - ( x3 - x2 - 3x + 3 ) - 5x( x2 + 8x + 16 ) - ( x2 - 10x + 25 )
= x3 + 2x2 - 9x - 18 - x3 + x2 + 3x - 3 - 5x3 - 40x2 - 80x - x2 + 10x - 25
= ( x3 - x3 - 5x3 ) + ( 2x2 + x2 - 40x2 - x2 ) + ( -9x + 3x + 10x - 80x ) + ( -18 - 3 - 25 )
= -5x3 - 38x2 - 76x - 46
b) 2x( x - 4 )2 - ( x + 5 )( x - 2 )( x + 2 ) + 2( x + 5 )2 - ( x - 1 )2
= 2x( x2 - 8x + 16 ) - ( x + 5 )( x2 - 4 ) + 2( x2 + 10x + 25 ) - ( x2 - 2x + 1 )
= 2x3 - 16x2 + 32x - ( x3 + 5x2 - 4x - 20 ) + 2x2 + 20x + 50 - x2 + 2x - 1
= 2x3 - 16x2 + 32x - x3 - 5x2 + 4x + 20 + 2x2 + 20x + 50 - x2 + 2x - 1
= ( 2x3 - x3 ) + ( -16x2 - 5x2 + 2x2 - x2 ) + ( 32x + 4x + 20x + 2x ) + ( 20 + 50 - 1 )
= x3 - 20x2 + 58x + 69
c) ( x + 5 )2 - 4x( 2x + 3 )2 - ( 2x - 1 )( x + 3 )( x - 3 )
= x2 + 10x + 25 - 4x( 4x2 + 12x + 9 ) - ( 2x - 1 )( x2 - 9 )
= x2 + 10x + 25 - 16x3 - 48x2 - 36x - ( 2x3 - x2 - 18x + 9 )
= x2 + 10x + 25 - 16x3 - 48x2 - 36x - 2x3 + x2 + 18x - 9
= ( -16x3 - 2x3 ) + ( x2 - 48x2 + x2 ) + ( 10x - 36x + 18x ) + ( 25 - 9 )
= -18x3 - 46x2 - 8x + 16
d) -2x( 3x + 2 )( 3x - 2 ) + 5( x + 2 )2 - ( x - 1 )( 2x + 1 )( 2x - 1 )
= -2x( 9x2 - 4 ) + 5( x2 + 4x + 4 ) - ( x - 1 )( 4x2 - 1 )
= -18x3 + 8x + 5x2 + 20x + 20 - ( 4x3 - 4x2 - x + 1 )
= -18x3 + 8x + 5x2 + 20x + 20 - 4x3 + 4x2 + x - 1
= ( -18x3 - 4x3 ) + ( 5x2 + 4x2 ) + ( 8x + 20x + x ) + ( 20 - 1 )
= -22x3 + 9x2 + 29x + 19
Ta có:63^2-47^2=3969-2209=1760
215^2-105^2=46225-11025=35200
ks nhé!Học tốt!
a)
<=> \(3x-12x^2+12x^2-6x=9\)
<=> \(-3x=9\)
<=> \(x=-3\)
b)
<=> \(6x-24x^2-12x+24x^2=6\)
<=> \(-6x=6\)
<=> \(x=-1\)
c)
<=> \(6x-4-3x+6=1\)
<=> \(3x+2=1\)
<=> \(x=-\frac{1}{3}\)
d)
<=> \(9-6x^2+6x^2-3x=9\)
<=> \(-3x=0\)
<=> \(x=0\)
e) KO HIỂU ĐỀ
f)
<=> \(4x^2-8x+3-\left(4x^2+9x+2\right)=8\)
<=> \(-17x+1=8\)
<=> \(x=-\frac{7}{17}\)
g)
<=> \(-6x^2+x+1+6x^2-3x=9\)
<=> \(-2x=8\)
<=> \(x=-4\)
h)
<=> \(x^2-x+2x^2+5x-3=4\)
<=> \(3x^2+4x=7\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{7}{3}\end{cases}}\)
a. \(3x\left(1-4x\right)+6x\left(2x-1\right)=9\)
\(\Rightarrow3x-12x^2+12x^2-6x=9\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
b. \(3x\left(2-8x\right)-12x\left(1-2x\right)=6\)
\(\Rightarrow6x-24x^2-12x+24x^2=6\)
\(\Rightarrow-6x=6\)
\(\Rightarrow x=-1\)
c. \(2\left(3x-2\right)-3\left(x-2\right)=1\)
\(\Rightarrow6x-4-3x+6=1\)
\(\Rightarrow3x+2=1\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=-\frac{1}{3}\)