Cho ba số dương x,y,z. Chứng minh rằng:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2y}\le\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)
\(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)
Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)
Chúc bạn học tốt
\(\frac{5}{x}+\frac{5}{y}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Vai trò của x,y là bình đẳng,nên ta giả sử \(x\ge y\). Dùng BĐT để giới hạn khoảng giá trị của số nhỏ hơn (y)
Hiển nhiên ta có: \(\frac{1}{y}<\frac{1}{5}\) nên y>5. Mặt khác,do \(x\ge y\ge1\) nên \(\frac{1}{x}\le\frac{1}{y}\). Do đó:
\(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\).
Mà \(\frac{2}{y}\ge\frac{1}{5}\) nên \(10\ge y\). Vậy \(6\le y\le10\). Ta có:
Với y = 6 thì \(\frac{1}{x\ }=\frac{1}{5}-\frac{1}{6}=\frac{1}{30}\Leftrightarrow x=30\)
Với y = 7 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\Leftrightarrow x=35\) (loại)
Với y = 8 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{8}=\frac{3}{40}\Leftrightarrow x=40\) (loại)
Với y = 9 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}\Leftrightarrow x=45\) (loại)
Với y = 10 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\Leftrightarrow x=10\)
Vậy x=30,y=6. Do vai trò bình đẳng nên ta có thêm 1 giá trị khác: x=6,y=30
và x=10,y=10
Cho tứ giác ABCD có P và Q lần lượt là trung điểm của AD và BC. Chứng minh rằng: 2PQ \(\le\)AB + CD.
t ko hok nè
mai có cô khó tính lắm
haizz
ông cứ ngủ đi mong sáng bị thầy, cô cho ăn trứng ngỗng nhá
chúc may măns
Bài 1:
a, Kéo dài BH cắt AC tại K
\(\Delta AHB=\Delta AHK\left(g.c.g\right)\Rightarrow\hept{\begin{cases}AB=AK=12cm\\HB=HK\end{cases}}\)
Ta có: \(KC=AC-AK=18-12=6\left(cm\right)\)
HM là đường trung bình của \(\Delta BKC\Rightarrow HM=\frac{1}{2}KC=\frac{1}{2}.6=3\left(cm\right)\)
Chúc bạn học tốt.
Câu hỏi của doanthihuong - Toán lớp 7 - Học toán với OnlineMath xfd