K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

17 tháng 8 2020

a) Xét tứ giác ABCD ta có ( ^B = 2^C mới được nhé)

^A + ^B + ^C + ^D = 3600

=> 1500 + ^B + ^C + ^D = 3600

=> ^B + ^C + ^D = 2100

Có ^B = 2^C 

=> 2 ^C + ^C + ^D = 2100

=> 3^C + ^D = 2100

Có ^C = 2^D

=> 3 . 2^D + ^D = 2100

=> 7^D = 2100

=> ^D = 300

+) ^C = 2^D = 2.300 = 600

+) ^B = 2^C = 2.600 = 1200

b) Xét tứ giác ABCD có :

^A + ^B + (^C + ^D) = 3600

=> 2^B + ^B + 2100 = 3600

=> 3^B = 1500

=> ^B = 500

+) ^A = 2^B = 2.500 = 1000

Có ^C + ^D = 2100 => ^C = ^D = 210 : 2 = 1050

Vậy ^A = 1000,^B = 500,^C = ^D = 1050

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)

=> ^A = 360 , ^B = 720 , ^C = 1080 , ^D = 1440

d) Tự làm

17 tháng 8 2020

2 cạnh đáy thì // với nhau, 2 cạnh bên k //

17 tháng 8 2020

Nếu như hình thang có 2 cặp cạnh song song luôn thì sao vậy bạn?

17 tháng 8 2020

mọi người ơi giúp mk nhanh nha cần ngay bây giờ

17 tháng 8 2020

d) \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12=\left(a^2+a\right)^2+4\left(a^2+a\right)+16-4\)

\(=\left(a^2+a+2\right)^2-4=\left(a^2+a+2-4\right)\left(a^2+a+2+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+6\right)=\left(a-1\right)\left(a+2\right)\left(a^2+a+6\right)\)

Phương trình đã cho là phương trình đối xứng bậc 4 với dạng tổng quát là:

ax4 + bx3 + cx2 + bx + a = 0 (a ≠ 0)

Vì x = 0, không phải là nghiệm của phương trình, nên chia hai vế của phương trình cho x2 , nên phương trình đưa về dạng:

x2 – 2x – 1  +  = 0

<=> x2 +  - 2(x + ) - 1 = 0

Đặt y = x +  =>x2 +  = y2 - 2 . Nên ta được phương trình:

y2 – 2y – 3 = 0 <=> y = -1, y = 3

+) x +  = -1 <=> x2 + x + 1 = 0 vô nghiệm

+) x +  = 3 <=> x2 - 3x + 1 = 0

<=> x1,2 = 

Học Tốt~~

sorry pé ms lp 6 năm nay lp 7

17 tháng 8 2020

Nếu p = 2 

=> p + 4 = 6 (loại) 

Nếu p = 3

=> p + 4 = 7 (tm)

=> p + 14 = 17 (tm)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)

Khi p = 3k + 1 

=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) \(⋮\)

=> p + 14 là hợp số (loại)

Khi p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3 (loại)

=> p + 4 là hợp số (loại)

Vậy p = 3

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)