Chứng minh rằng :
39^20 + 39^13 chia hết 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2=7+2=9\)
\(\Rightarrow x+\frac{1}{x}=3\) (vì x > 0)
Mặt khác, \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=3^3-3.3=18\)
Ta có: \(B=x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=7.18-3=123\)
Vậy B = 123
Chúc bạn học tốt.
\(a^2+b^2+c^2=a^3+b^3+c^3 \Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c)=0(1)\)
Mà \(a^2+b^2+c^2=1\) nên \(a\leq1\),\(b\leq1\),\(c\leq1\)( do \(a^2 \geq 0\))=>\(1-c\leq0\)
hay \(a^2(1-a) \leq 0\), \(b^2(1-b) \leq 0\), \(c^2(1-c) \leq 0\)
\(\Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c) \leq 0(2)\)
Từ (1)(2) suy ra (1) xảy ra khi và chỉ khi 1 trong 3 số bằng 1 và 2 số còn lại bằng 0.
Nên P=1.
muốn giải được anh phải xét từng cái cần cái gì thì anh sẽ ra đáp án thôi
gợi ý: muốn tính IK ta cần phải chứng minh cái gì
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
Nêu địa chỉ mình đến nhà trao giải
AE làm giàu
39^13+39^20
=39^13(39^7+1)
Có: 39^7+1 chia hết cho 40
=> 39^20+39^13 chia hết cho 40.
Ta có :
\(39^{20}+39^{13}\)
\(=39^{13}\left(39^7+1\right)⋮\left(39+1\right)=40\)
\(\Rightarrow39^{13}\left(39^7+1\right)⋮40\)
\(\Rightarrow39^{20}+39^{13}⋮40\) (đpcm)