K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAC và ΔOBC có 

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)
OC chung

Do đó: ΔOAC=ΔOBC

b: TA có: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}\)

=>\(\widehat{OAD}=\widehat{OBF}\)

Xét ΔOAD và ΔOBF có

\(\widehat{OAD}=\widehat{OBF}\)

OA=OB

\(\widehat{AOD}\) chung

Do đó: ΔOAD=ΔOBF

c: Ta có: \(\widehat{OAC}+\widehat{CAF}=180^0\)(kề bù)

\(\widehat{OBC}+\widehat{CBD}=180^0\)(kề bù)

mà \(\widehat{OAC}=\widehat{OBC}\)

nên \(\widehat{CAF}=\widehat{CBD}\)

Ta có; ΔOAD=ΔOBF

=>\(\widehat{ODA}=\widehat{OFB}\) và OD=OF

Ta có: OA+AF=OF

OB+BD=OD

mà OA=OB và OF=OD

nên AF=BD

Xét ΔCAF và ΔCBD có

\(\widehat{CAF}=\widehat{CBD}\)

AF=BD

\(\widehat{CFA}=\widehat{CDB}\)

Do đó; ΔCAF=ΔCBD

=>CF=CD và CA=CB

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(1)

Ta có: CA=CB

=>C nằm trên đường trung trực của BA(2)

Từ (1),(2) suy ra OC là đường trung trực của BA

d: Ta có: OD=OF

=>O nằm trên đường trung trực của DF(3)

Ta có: CD=CF

=>C nằm trên đường trung trực của DF(4)

Ta có: MD=MF

=>M nằm trên đường trung trực của DF(5)

Từ (3),(4),(5) suy ra O,C,M thẳng hàng

13 tháng 4 2024

chịu thôi em mới lớp 5

 

a: Ta có: \(\widehat{C}+\widehat{DEC}=90^0\)

\(\widehat{C}+\widehat{B}=90^0\)

Do đó: \(\widehat{DEC}=\widehat{B}\)

b: Xét ΔAFD và ΔAED có

AF=AE

\(\widehat{FAD}=\widehat{EAD}\)

AD chung

Do đó: ΔAFD=ΔAED

=>\(\widehat{AFD}=\widehat{AED}\)

mà \(\widehat{AFD}+\widehat{DFB}=180^0\)(hai góc kề bù)

và \(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

nên \(\widehat{DFB}=\widehat{CED}\)

=>\(\widehat{DFB}=\widehat{DBF}\)

=>ΔDBF cân tại D

c: Ta có: ΔAFD=ΔAED

=>DF=DE

mà DF=DB

nên DE=DB

AH
Akai Haruma
Giáo viên
14 tháng 4 2024

Đề bài cụ thể là gì vậy bạn?

Xét ΔNBK và ΔNAC có

NB=NA

\(\widehat{BNK}=\widehat{ANC}\)(hai góc đối đỉnh)

NK=NC

Do đó: ΔNBK=ΔNAC

=>\(\widehat{NBK}=\widehat{NAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KB//AC

Xét ΔMBP và ΔMCA có

MB=MC

\(\widehat{BMP}=\widehat{CMA}\)

MP=MA

Do đó: ΔMBP=ΔMCA
=>\(\widehat{MBP}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BP//AC

ta có: BP//AC

BK//AC

BP,BK có điểm chung là B

Do đó: P,B,K thẳng hàng

 

13 tháng 4 2024

Xét tam giác ABC có AB = AC và M là trung điểm của cạnh BC. Gọi N là trung điểm của cạnh AB.

Ta có:
AB = AC (do tam giác ABC cân tại đỉnh A).
BM = CM (vì M là trung điểm của BC).
AM cạnh chung.
Suy ra: ΔAMB = ΔAMC (c.c.c) ⇒ ∠AMB = ∠AMC (hai góc tương ứng).
Ta còn biết:
∠AMB + ∠AMC = 180° (hai góc kề bù).
∠AMB = ∠AMC = 90°.
Vậy AM vuông góc với BC.
Chứng minh rằng điểm KPB thẳng hàng không được yêu cầu trong đề bài, nhưng ta có thể tiếp tục xem xét tam giác ABC để tìm các thông tin khác nếu bạn muốn.

AH
Akai Haruma
Giáo viên
13 tháng 4 2024

Lời giải:

$(x+7)^{n+1}-(x+7)^{n-3}=0$

$(x+7)^{n-3}[(x+7)^4-1]=0$

$\Rightarrow (x+7)^{n-3}=0$ hoặc $(x+7)^4-1=0$

Nếu $(x+7)^{n-3}=0$

$\Rightarrow x+7=0\Rightarrow x=-7$

Nếu $(x+7)^4-1=0$

$\Rightarrow (x+7)^4=1=1^4=(-1)^4$

$\Rightarrow x+7=1$ hoặc $x+7=-1$

$\Rightarrow x=-6$ hoặc $x=-8$.

AH
Akai Haruma
Giáo viên
13 tháng 4 2024

Lời giải:

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|x-2011|+|2025-x|\geq |x-2011+2025-x|=4$

$|x-2023|\geq 0$ với mọi $x$

$\Rightarrow P=|x-2011|+|2025-x|+|x-2023|\geq 4+0=4$
Vậy $P_{\min}=4$
Giá trị này đạt tại $(x-2011)(2025-x)\geq 0$ và $x-2023=0$

Hay $x=2023$.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Gọi H là giao điểm của AB và CK

Xét ΔBHC có

BK,CA là các đường cao

BK cắt CA tại D

Do đó: D là trực tâm của ΔBHC

=>DH\(\perp\)BC

mà DE\(\perp\)BC

và DH,DE có điểm chung là D

nên H,D,E thẳng hàng

=>BA,DE,CK đồng quy

AH
Akai Haruma
Giáo viên
13 tháng 4 2024

Hình vẽ: