Tìm x:
a, (x-1)3 - (x-1)3 - (6x-1) = -10
b,(2x-1)2 + (2x-1)*(2x-3) - (2x+3)2 + (2x+3)*(-3x) - 24 = 4
Mk đang cần gấp! Mong mn giúp đỡ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(63x^2-16x+1=0\)
\(\Leftrightarrow63x^2-9x-7x+1=0\)
\(\Leftrightarrow9x\left(7x-1\right)-\left(7x-1\right)=0\)
\(\Leftrightarrow\left(9x-1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-1=0\\7x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=\frac{1}{7}\end{cases}}}\)
Bài làm:
Ta có: \(63x^2-16x+1=0\)
\(\Leftrightarrow\left(63x^2-9x\right)-\left(7x-1\right)=0\)
\(\Leftrightarrow9x\left(7x-1\right)-\left(7x-1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(9x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x-1=0\\9x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=\frac{1}{7}\end{cases}}\)
Vì \(\left(x+1\right)^4\ge0\forall x\); \(\left(x-3\right)^4\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}\left(ktm\right)}\)
=> Pt vô nghiệm
a) ( x + 1 ) 4 + ( x - 3 ) 4 = 0
Vì \(\left(x+1\right)^4\ge0\forall x\inℤ\)
\(\left(x-3\right)^4\ge0\forall x\inℤ\)
Nên \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)
Vậy .....
a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)
=> pt vô nghiệm
b) \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
a) x2 - 4y2
= x2 - ( 2y )2
= ( x - 2y )( x + 2y )
b) x2 + x - 12
= x2 - 3x + 4x - 12
= x( x - 3 ) + 4( x - 3 )
= ( x - 3 )( x + 4 )
c) x2 + 2xy + y2 - 11
= ( x2 + 2xy + y2 ) - 11
= ( x + y )2 - ( √11 )2
= ( x + y - √11 )( x + y + √11 )
d) x4 + 1
= ( x4 + 2x2 + 1 ) - 2x2
= ( x2 + 1 )2 - ( √2x )2
= ( x2 - √2x + 1 )( x2 + √2x + 1 )
a) \(x^2-4y^2\)
\(=x^2-\left(2y\right)^2\)
\(=\left(x-2y\right).\left(x+2y\right)\)
b) \(x^2+x-12\)
\(=x^2+4x-3x-12\)
\(=\left(x^2+4x\right)-\left(3x+12\right)\)
\(=x.\left(x+4\right)-3.\left(x+4\right)\)
\(=\left(x+4\right).\left(x-3\right)\)
c) \(x^2+2xy+y^2-11\)
\(=\left(x^2+2xy+y^2\right)-11\)
\(=\left(x+y\right)^2-11\)
\(=\left(x+y\right)^2-\left(\sqrt{11}\right)^2\)
\(=\left(x+y-\sqrt{11}\right).\left(x+y+\sqrt{11}\right)\)
a3 + b3 + c3 = \(\orbr{\begin{cases}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\\\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\end{cases}}\)
Chứng minh từng cái một nhé :)
1/ ( a + b + c )( a2 + b2 + c2 - ab - bc - ca ) + 3abc
= a( a2 + b2 + c2 - ab - bc - ca ) + b( a2 + b2 + c2 - ab - bc - ca ) + c( a2 + b2 + c2 - ab - bc - ca ) + 3abc
= a3 + ab2 + ac2 - a2b - abc - a2c + a2b + b3 + c2b - ab2 - b2c - abc + a2c + b2c + c3 - abc - c2b - c2a + 3abc
= a3 + b3 + c3 - 3abc + 3abc
= a3 + b3 + c3 ( đpcm )
2/ ( a + b + c )3 - 3( a + b )( b + c )( c + a )
= [ ( a + b ) + c ]3 - ( 3a + 3b )( bc + ab + c2 + ac )
= [ ( a + b )3 + 3( a + b )2c + 3( a + b )c2 + c3 ] - ( 3abc + 3a2b + 3ac2 + 3a2c + 3b2c + 3ab2 + 3bc2 + 3abc )
= [ a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2 + c3 ] - ( 3abc + 3a2b + 3ac2 + 3a2c + 3b2c + 3ab2 + 3bc2 + 3abc )
= a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2 + c3 - 3abc - 3a2b - 3ac2 - 3a2c - 3b2c - 3ab2 - 3bc2 - 3abc
= a3 + b3 + c3 ( đpcm )
Cái HĐT này nó khá là khó khi phân tích từ VT , nên mình chỉ có thể khai triển từ VP thôi. Thông cam nhé =)
a) \(105^3-15.105^2+75.105-125\)
\(=105^3-3.105^2.5+3.105.5^2-5^3\)
\(=\left(105-5\right)^3\)
\(=100^3=1000000\)
b) \(63^2-27^2+72^2-18^2\)
\(=\left(63-27\right)\left(63+27\right)+\left(72-18\right)\left(72+18\right)\)
\(=36.90+54.90\)
\(=90.90=8100\)
a)
Ta có
\(\left(x-1\right)^3-\left(x-1\right)^3-\left(6x-1\right)=-10\)
\(\Leftrightarrow-6x+1=-10\)
\(\Leftrightarrow-6x=-11\)
\(\Leftrightarrow x=\frac{11}{6}\)
Vậy \(x=\frac{11}{6}\)
a) ( x - 1 )3 - ( x - 1 )3 - ( 6x - 1 ) = -10
<=> -( 6x - 1 ) = -10
<=> -6x + 1 = -10
<=> -6x = -11
<=> x = 11/6
b) ( 2x - 1 )2 + ( 2x - 1 )( 2x - 3 ) - ( 2x + 3 )2 + ( 2x + 3 )( -3x ) - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - ( 4x2 + 12x + 9 ) - 6x2 - 9x - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - 4x2 - 12x - 9 - 6x2 - 9x - 24 = 4
<=> -2x2 - 33x - 29 - 4 = 0
<=> -2x2 - 33x - 33 = 0 ( muốn kết quả thì ib còn mình để là vô nghiệm vì nó có nghiệm vô tỉ )
=> Vô nghiệm