Giải phương trình \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình gửi đề ạ, chứ sao trên đó nó không hiện đề
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:2x^2+16x+18\ge0;x^2-1\ge0\)
\(pt\Leftrightarrow\sqrt{x^2-1}=2x+4-\sqrt{2x^2+16x+18}\)(1)
\(\Leftrightarrow\sqrt{x^2-1}\left(\frac{2\sqrt{x^2-1}}{2x+4+\sqrt{2x^2+16x+18}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\2\sqrt{x^2-1}=2x+4+\sqrt{2x^2+16x+18}\left(2\right)\end{cases}}\)
Lấy(1) + (2), ta được: \(3\sqrt{x^2-1}=4x+8\Leftrightarrow x=\frac{3\sqrt{57}-32}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\) \(\Rightarrow a^2-3a+2\le0\Rightarrow a^2+2\le3a\)
\(\Rightarrow a+\frac{2}{a}\le3\)\(\Rightarrow\left(a+\frac{2}{a}\right)^2\le9\Rightarrow a^2+\frac{4}{a^2}\le5\)
Tương tự : \(b+\frac{2}{b}\le3\); \(b^2+\frac{4}{b^2}\le5\)
\(\Rightarrow a+\frac{2}{a}+a^2+\frac{4}{a^2}+b+\frac{2}{b}+b^2+\frac{4}{b^2}\le16\)
Áp dụng BĐT Cô-si,ta có :
\(16=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)+\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\ge2\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)
\(\Leftrightarrow8\ge\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)
\(\Leftrightarrow A=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\le64\)
Vậy GTLN của A là 64 \(\Leftrightarrow\orbr{\begin{cases}a=b=1\\a=b=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(pt\)\(\Leftrightarrow\)\(9 . ( x - 2 ) - ( x^2 - 4 )= 0\) ( bình phương vế lên )
\(\Leftrightarrow\)\(9. ( x - 2 ) - ( x + 2 )(x-2)=0\)
\(\Leftrightarrow\)\(( x - 2 )(7 - x )=0\)
\(\Leftrightarrow\)\(x - 2 = 0\) \(hoặc \) \(7 - x = 0\)
\(\Leftrightarrow\)\(x = 2 \) \(hoặc\) \(x= 7\)
\(Đk:x\ge1\)
\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
\(\Leftrightarrow25\left(x^3+1\right)=4\left(x^4+4x^2+4\right)\)
\(\Leftrightarrow4x^4-25x^3+16x^2-9=0\)
\(\Leftrightarrow\left(x^2-5x-3\right)\left(4x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x-3=0\\4x^2-5x+3=0\left(vn\right)\end{cases}}\)
\(\Leftrightarrow x=\frac{5\pm\sqrt{37}}{2}\left(tm\right)\)
Vậy .............
sửa bạn kia tí đk x>=-1
Cách 2: Để ý \(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\) nên ta tách \(2\left(x^2+2\right)=a\left(x^2-x+1\right)+b\left(x+1\right)\) bằng cách đồng nhất hệ số ta được phương trình:
\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2-x+1\right)+2\left(x+1\right)\)
Chia hai vế cho x^2-x+1 dĩ nhiên > 0
sau khi chia ta thu được: \(5\sqrt{\frac{x+1}{x^2-x+1}}=2\frac{x+1}{x^2-x+1}+2\)
Đặt \(t=\sqrt{\frac{x+1}{x^2-x+1}}\) ta có pt: \(2t^2-5t+2=0\)
rồi bạn giải nốt pt ẩn t rồi thay lên nha =))) good luck