K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(nCO2=\frac{11}{12+16.2}=0,25mol\)

\(VCO_2=0,25.22,4=5,6l\)

\(nCH_4=\frac{7,84}{22,4}=0,35mol\)

\(mCH_4=0,35.\left(12+1.4\right)=5,6g\)

15 tháng 12 2021

\(nCO2=\frac{11}{12+16,2}=0,25mol\)

\(VCO_2=0,25.22,4=5,6l\)

\(nCH_4=\frac{7,84}{22,4}=0,35mol\)

\(mCH_4=0,35.\left(12+1,4\right)=5,6g\)

13 tháng 12 2021

Answer:

\(D=m^2-4mp+5p^2+10m-22p+20\)

\(=m^2-4mp+4p^2+p^2+10m-20p-2p+1+19\)

\(=\left(m^2-4mp+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+19\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25-6\)

\(=[\left(m-2p\right)^2+10\left(m-2p\right)+25]+\left(p-1\right)^2-6\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2-6\)

\(\forall m;p\) có \(\left(m-2p+5\right)^2+\left(p-1\right)^2-6\ge-6\) hay \(D\ge-6\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(m-2p+5\right)^2=0\\\left(p-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p-1=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m-2.1+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

Vậy giá trị nhỏ nhất của biểu thức \(D=-6\) khi \(\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

13 tháng 12 2021

Answer:

\(B=-5x^2-5y^2+8x-6y-1\)

\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)

\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)

Có:

\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)

Do vậy:

\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)

Vậy "=" xảy ra khi:

\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

\(C=-5x^2-2xy-2y^2+14x+10y-1\)

\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)

\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)

\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)

Có:

\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)

Do vậy:

\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

30 tháng 1 2022

Ta có : xy-3x+2z=10

=> xy-3x+2z-4=6

ta xét : (x2+y2+z2)-(xy-3x+2z-4) =0

       =>  x2+y2+z2-xy+3x-2z+4=0

      => ( y2-xy+\(\dfrac{x^2}{4}\)) + (\(\dfrac{3x^2}{4}\)+3x+3) + (z2-2z+1)=0

      =>  \(\dfrac{\left(2y-x\right)^2}{4}\)\(\dfrac{3}{4}\)(x2+4x+4) + (z-1)2 =0

      =>  \(\dfrac{\left(2y-x\right)^2}{4}\) + \(\dfrac{3\left(x+2\right)^2}{4}\) + (z-1)2=0

ta thấy cả biểu thức trên đều lớn hơn hoặc bằng 0 với mọi x,y,z ( tự lí luận)

do đó : \(\dfrac{\left(2y-x\right)^2}{4}\)+\(\dfrac{3\left(x+2\right)^2}{4}\)+ (z-1)2=0 khi và chỉ khi z=1,x=-2,y=-1 .

thay z=1,x=-2,y=-1 vào P ta được :

  P=2020 

Chúc bạn học giốt !@@@

12 tháng 12 2021

lớp 8 ng ta qua hoc 24 hết r anh ơi

11 tháng 12 2021

a) Tìm Min

\(A=\frac{4x+3}{x^2+1}=A+1=\frac{x^2+4x+1}{x^2+1}\)\(=\frac{\left(x+2\right)^2}{x^2+1}\)\(=0\)

\(=MinA=-1\)

Dấu '' = '' xảy ra khi \(x+2=0=x=-2\)

Tìm Max

\(A=\frac{4x+3}{x^2+1}=4-\frac{4x^2-4x+1}{x^2}\)\(=4-\frac{\left(2x-1\right)^2}{x^2+1}\)\(=4\)

\(=MaxA=4\)

Dấu '' = '' xảy ra khi \(2x-1=0=0=x=\frac{1}{2}\)

11 tháng 12 2021

Ko biết -Ko hiểu ( oke )