a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
=4x3-3x2+8x2-6x+16x-12 rồi bạn phân tích nhân tử từng cặp ra nhân tử 4x-3
a, \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)\)
\(=\left[\left(x+2\right)\left(x-7\right)\right].\left[\left(x+3\right)\left(x-8\right)\right]\)
\(=\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144\)(1)
Đặt \(x^2-5x-14=t\) thì \(x^2-5x-24=t-10\)
Thay vào (1), ta có:
\(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)\)
\(=t\left(t-10\right)-144\)
\(=t^2-10t-144\)
\(=t^2-18t+8t-144\)
\(=t\left(t-18\right)+8\left(t-18\right)\)
\(=\left(t+8\right)\left(t-18\right)\)
\(=\left(x^2-5x-14+8\right)\left(x^2-5x-14-18\right)\)
\(=\left(x^2-5x-6\right)\left(x^2-5x-32\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x^2-5x-32\right)\)