cho M= 11x21x31x...x101 . Tìm dư của M khi chia cho 100
mong mn júp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)
\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)
Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)
\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)
\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)
Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)
\(\sqrt{12-x}-3+\sqrt[3]{x+24}-3=0\)
Liên hợp sẽ có:
\(\frac{3-x}{\sqrt{12-x}+3}+\frac{x-3}{\sqrt[3]{x+24}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{x+24}+3}-\frac{1}{\sqrt{12-x}+3}\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(\frac{1}{\sqrt[3]{x+24}+3}-\frac{1}{\sqrt{12-x}+3}\right)=0\end{cases}}\)
\(\Rightarrow x=3\)
Ta có :
\(a+b-ab=-11\)
\(\Leftrightarrow\left(a-ab\right)-\left(1-b\right)=-12\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=-12\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=-12\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=12\)
\(\Leftrightarrow\hept{\begin{cases}a-1\inƯ\left(12\right)\\b-1\inƯ\left(12\right)\end{cases}}\)
Lại có : a, b là các số nguyên tố.
\(\Leftrightarrow\hept{\begin{cases}a-1\inℕ^∗\\b-1\inℕ^∗\end{cases}}\)
(Chỗ này viết ra có nghĩa là chỉ xét những ước nguyên dương của 12, các trường hợp âm bị loại)
Ta có bảng sau :
\(a-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(b-1\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(1\) |
\(a\) | \(2\) | \(3\) | \(4\) | \(5\) | \(7\) | \(13\) |
\(b\) | \(13\) | \(7\) | \(5\) | \(4\) | \(3\) | \(2\) |
TM | TM | KTM | KTM | TM | KTM |
Vậy \(\left(a;b\right)\in\left\{\left(2;13\right);\left(3;7\right);\left(7;3\right);\left(13;2\right)\right\}\)
\(2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)
Thay thế \(a+b+c=1\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a+b+c}{b+c}+\frac{a+2b+c}{a+c}+\frac{a+b+2c}{a+b}\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)
\(\Leftrightarrow\frac{2b}{a}+\frac{2c}{b}+\frac{2a}{c}\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)
\(\Leftrightarrow\left(\frac{2b}{a}-\frac{2b}{a+c}\right)+\left(\frac{2c}{b}-\frac{2c}{a+b}\right)+\left(\frac{2a}{c}-\frac{2a}{b+c}\right)\ge3\)
\(\Leftrightarrow\frac{2bc}{a\left(a+c\right)}+\frac{2ca}{b\left(a+b\right)}+\frac{2ab}{c\left(b+c\right)}\ge3\)
\(\Leftrightarrow\frac{bc}{a\left(a+c\right)}+\frac{ca}{b\left(a+b\right)}+\frac{ab}{c\left(b+c\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc}\)
Chứng minh rằng : \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^2b^2c^2}=2a^2bc\end{cases}}\)
\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(đpcm\right)\)
Vì \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)
Vậy \(\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
ĐK: \(x\ge0\)
\(C=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
a) \(C>9\)
<=> \(1-\frac{3}{\sqrt{x}+1}>9\)
<=> \(\frac{3}{\sqrt{x}+1}< -8< 0\)vô lí
=> Không tồn tại x
b)
\(C< \frac{1}{2}\)
<=> \(1-\frac{3}{\sqrt{x}+1}< \frac{1}{2}\)
<=> \(\frac{3}{\sqrt{x}+1}>\frac{1}{2}\)
<=> \(\frac{\sqrt{x}+1}{3}< 2\)( vì \(\sqrt{x}+1>0\))
<=> \(\sqrt{x}< 5\)
<=> \(0\le x\le25\)( tm đk)
Vậy:...
c)
\(C=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0;\forall x\)
khi đó: \(\sqrt{x}+1\ge1\)=> \(\frac{3}{\sqrt{x}+1}\le3\)=> \(C\ge1-3=-2\)
"=" xảy ra <=> x = 0.
Vậy gtnnC = -2 tại x = 0
A B C E D O M 1 1 1 1 2
Kéo dài OA cắt DE tại M
\(\Delta ABC\)nội tiếp ( O ) đường kính BC nên vuông tại A \(\Rightarrow\Delta ADE\)vuông tại A
Xét \(\Delta ABC\)và \(\Delta ADE\)có :
\(\widehat{BAC}=\widehat{EAD}=90^o\)
\(AB=AE\)
\(AD=AC\)
\(\Rightarrow\Delta ABC=\Delta AED\left(c.g.c\right)\)
\(\Rightarrow\widehat{E_1}=\widehat{B_1}\)
OA = OC nên \(\Delta OAC\)cân tại O \(\Rightarrow\widehat{A_2}=\widehat{C_1}\)
Mặt khác : \(\widehat{A_1}=\widehat{A_2}\)( hai góc đối đỉnh )
\(\Rightarrow\widehat{E_1}+\widehat{A_1}=\widehat{B_1}+\widehat{C_1}=90^o\Rightarrow\widehat{EMO}=90^o\)
Vậy OA \(\perp\)DE
A O H K P B C
a) Xét \(\Delta\)ACP và \(\Delta\)PCB có:
^ACP = ^PCB ( ^C chung )
^APC = ^PBC ( cùng chắn cung BP )
=> \(\Delta\)ACP ~ \(\Delta\)PCB ( g-g)
=> \(\frac{CP}{CB}=\frac{AC}{CP}\Rightarrow CP^2=AC.BC\)
b) Ta có: CK; CP là các tiếp tuyến tại K; P
=> CO vuông góc KP
=> H thuộc CO
Ta có: PH // OK ( cùng vuông góc với CK )
KH // OP ( cùng vuông góc với CP )
=> KOPH là hình bình hành
=> PH = OK = r