cho A= x^3+y^3+z^3-3xyz.
1. CMR: nếu x+y+z=0 thì A=0
2. Điều ngược lại có đúng ko?
Cần Gấp!!!!!
THANKS!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x^2-5xy+3y^2\)
\(=2x^2-2xy-3xy+3y^2=2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(x-y\right)\left(2x-3y\right)\)
\(x^3-7x-6=x^3+1-7x-7\)
\(=\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
\(x^2+x=6\)
<=> \(x^2+x-6=0\)
<=> \(\left(x-2\right)\left(x+3\right)=0\)
tự lm tiếp
b) \(6x^3+x^2=2x\)
<=> \(6x^3+x^2-2x=0\)
<=> \(x\left(6x^2+x-2\right)=0\)
<=> \(x\left(2x-1\right)\left(3x+2\right)=0\)
tự giải ra
a) \(4x^2-4x+3=4x^2-4x+1+2\)
\(=\left(2x-1\right)^2+2>0\)\(\forall x\)
=> ko phân tích thành nhân tử được
b) \(9x^2+6x-8=9x^2+12x-6x-8\)
\(=3x\left(3x+4\right)-2\left(3x+4\right)=\left(3x-2\right)\left(3x+4\right)\)
c) \(3x^2-8x+4=3x^2-6x-2x+4\)
\(=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)
câu b:(x-1)(x+2)(x+3)(x+6)
= (x-1)(x+6)(x+2)(x+3)
= (x.x + 5.x - 6)(x.x + 5.x + 6)
đặt x.x + 5.x = t
=> (t -6)(t+6)
= t.t - 36
ta có:
t.t >= 0
suy ra t.t - 36 >= -36
vậy min = -36
dấu "=" xảy ra chỉ khi t.t = 0
chỉ khi x.x + 5.x = 0
chỉ khi x=0 hoặc x=-5
a) Ta có: A= 4x^2 + 4x + 11 = 4x^2 + 4x + 1 + 10
= (2x+1)^2 + 10 >= 10. A đạt giá trị nhỏ nhất = 10 khi x=-1/2
Mk lm câu c nhé, câu a và b bn tham khảo của ngô thế trường
\(c,C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
\(2>0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y-2\right)^2=0\Rightarrow y=2\end{cases}}\)
Vậy \(minC=2\Leftrightarrow x=1;y=2\)
hok tốt!
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(A=1.199+1.195+...+3.1\)
\(A=3+7+...+195+199\)
Tổng A có: \(\frac{199-3}{4}+1=50\)( số hạng)
\(\Rightarrow A=\frac{\left(199+3\right).50}{2}=5050\)
Mấy ý kia chốc về lm nốt
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)
\(B=2^{64}-1+1\)
\(B=2^{64}\)
1)Phân tử khối là khối lượng của một phân tử tính bằng đơn vị cacbon ( cho biết sự nặng nhẹ tương đối giữa các phân tử). Phân tử khối bằng tổng nguyên tử khốicủa các nguyên tử tạo thành phân tử.
2)
Công thức hóa học giúp chúng ta biết:
1;\(A=x^3+y^3+z^3-3xyz\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(A=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(A=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
2;Nếu A = 0
Điều ngược lại đúng khi x^2+y^2+z^2-xy-yz-xz khác 0
Ta đi chứng minh A phụ thuộc vào x+y+z
\(A=x^3+y^3+z^3-3xyz.\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Mà x^2+y^2+z^2-xy-yz-xz>0
nên x+y+z =0 thì A=0