Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 thì dư 5 và chia cho 31 dư 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phát triển của mỗi cá nhân là quá trình mà một người trải qua trong suốt cuộc đời, bao gồm cả sự thay đổi về mặt thể chất, tinh thần, tình cảm, và xã hội. Đây là một quá trình liên tục, bắt đầu từ khi sinh ra và kéo dài đến khi qua đời. Phát triển cá nhân thường được xem xét qua nhiều khía cạnh khác nhau:
-
Phát triển thể chất: Đây là quá trình thay đổi và trưởng thành của cơ thể con người, bao gồm sự tăng trưởng về chiều cao, cân nặng, sự phát triển của các cơ quan và hệ thống cơ thể.
-
Phát triển tinh thần: Quá trình này liên quan đến sự phát triển về trí tuệ, khả năng tư duy, giải quyết vấn đề, và học hỏi. Nó bao gồm cả việc phát triển kỹ năng nhận thức và khả năng xử lý thông tin.
-
Phát triển tình cảm: Đây là quá trình thay đổi và trưởng thành về mặt cảm xúc, bao gồm khả năng nhận thức và quản lý cảm xúc của bản thân, cũng như khả năng đồng cảm và hiểu được cảm xúc của người khác.
-
Phát triển xã hội: Liên quan đến việc phát triển các kỹ năng xã hội, khả năng giao tiếp, tương tác với người khác, và hiểu biết về các quy tắc và vai trò trong xã hội.
-
Phát triển đạo đức và tâm lý: Quá trình này liên quan đến sự phát triển của giá trị, đạo đức, niềm tin, và thái độ của một người. Nó bao gồm cả việc phát triển khả năng tự nhận thức và hiểu biết về bản thân.
Phát triển cá nhân bị ảnh hưởng bởi nhiều yếu tố, bao gồm di truyền, môi trường, giáo dục, văn hóa, và kinh nghiệm sống. Việc hiểu và hỗ trợ quá trình phát triển cá nhân là quan trọng để giúp mỗi người có thể đạt được tiềm năng tối đa của mình.
+ 10 từ chỉ sự vật: Mặt trời, mặt trăng, bàn, ghế, bút, bảng, phấn, vở, sách; tủ
+ 10 từ chỉ hoạt động: Chạy, nhảy, cười, nói, khóc, nấu ăn, đọc sách, nghe nhạc, chơi cờ, đá bóng,
+ 10 từ chỉ đặc điểm: vui tính, chăm chỉ, ngoan ngoãn, lễ phép, sáng tạo, cần cù, siêng năng, tháo vát, bé bỏng, cao lớn.
+ 10 từ chỉ sự vật: Mặt trời, mặt trăng, bàn, ghế, bút, bảng, phấn, vở, sách; tủ
+ 10 từ chỉ hoạt động: Chạy, nhảy, cười, nói, khóc, nấu ăn, đọc sách, nghe nhạc, chơi cờ, đá bóng,
+ 10 từ chỉ đặc điểm: vui tính, chăm chỉ, ngoan ngoãn, lễ phép, sáng tạo, cần cù, siêng năng, tháo vát, bé bỏng, cao lớn.
Ta có pt(1): \(mx+7=6\left(m\ne0\right)\)
\(\Leftrightarrow mx=6-7\)
\(\Leftrightarrow mx=-1\)
\(\Leftrightarrow x=-\dfrac{1}{m}\)
pt(2): \(\dfrac{x}{2+m}=1\left(m\ne-2\right)\)
\(\Leftrightarrow x=1\cdot\left(2+m\right)=m+2\)
Vì 2 pt có 2 nghiệm bằng nhau nên ta có:
\(-\dfrac{1}{m}=m+2\)
\(\Leftrightarrow-1=m\left(m+2\right)\)
\(\Leftrightarrow-1=m^2+2m\)
\(\Leftrightarrow m^2+2m+1=0\)
\(\Leftrightarrow\left(m+1\right)^2=0\)
\(\Leftrightarrow m+1=0\)
\(\Leftrightarrow m=-1\left(tm\right)\)
Vậy: ...
Xét S là tổng của nghịch đảo tất cả các số trên bảng.
Do \(c=\dfrac{a\times b}{a+b}\) nên \(\dfrac{1}{c}=\dfrac{a+b}{a\times b}=\dfrac{1}{a}+\dfrac{1}{b}\)
Vì vậy, khi xóa 2 số \(a,b\) và thay bằng số c thì S không đổi.
Khi đó, nếu số còn lại trên bảng là \(x\) thì \(\dfrac{1}{x}=\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{9}\) \(=\dfrac{7129}{2520}\) hay \(x=\dfrac{2520}{7129}\)
Vậy số còn lại trên bảng là \(\dfrac{2520}{7129}\)
Những cây thân mọng thường sống ở nơi khô hạn như hoang mạc...
Những cây thân mọng nước thường sống ở những nơi có khí hậu khô hạn, đó là các vùng sa mạc hoặc nơi có lượng mưa rất thấp
f; (\(x\) + 4).(\(x-2\)) = 0
\(\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 2}
g; (\(x\) - 2).(\(x\) + 3) < 0
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 3 = 0 ⇒ \(x\) = -3
Lập bảng ta có:
\(x\) | - 3 2 |
\(x-2\) | - - 0 + |
\(x\) + 3 | - 0 + + |
(\(x-2\)).(\(x+3\)) | + 0 - 0 + |
Theo bảng trên ta có -3 < \(x\) < 2
Vậy -3 < \(x\) < 2
a) Vì \(p\) là snt lớn hơn 3 nên \(p⋮̸3\) \(\Rightarrow p^2\equiv1\left[3\right]\) hay \(p^2-1⋮3\)
b) Theo câu a), ta có \(p^2\equiv q^2\equiv1\left[3\right]\) nên \(p^2-q^2⋮3\)
c) Vì \(p,q\) là các snt lớn hơn 3 nên chúng cũng là các snt lẻ \(\Rightarrow p^2\equiv q^2\equiv1\left[8\right]\)
\(\Rightarrow p^2-q^2⋮8\)
Cho \(p=2,p=3\) ta thấy không thỏa mãn.
Cho \(p=5\) ta thấy thỏa mãn.
Xét \(p>5\), khi đó \(p⋮̸5\). Khi đó \(p^2\equiv1,4\left[5\right]\) (tính chất của scp)
Khi \(p^2\equiv1\left[5\right]\) thì \(p^2+1⋮5\), khi \(p^2\equiv4\left[5\right]\) thì \(p^2+6⋮5\) nên 1 trong 2 số này là hợp số, không thỏa mãn.
Vậy \(p=5\) là snt duy nhất thỏa mãn ycbt.
Đây là dạng toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau.
+ Nếu p = 2 ta có: p2 + 4 = 22 + 4 = 4 + 4 = 8 (loại)
+ Nếu p = 3 ta có: p2 + 6 = 32 + 6 = 9 + 6 = 15 (loại)
+ Nếu p = 5 ta có: p2 + 4 = 52 + 4 = 25 + 4 = 29 (thỏa mãn)
p2 + 6 = 52 + 6 = 25 + 6 = 31 (thỏa mãn)
+ Nếu p > 5 khi đó: p2 : 5 dư 1 hoặc 4 (tính chất số chính phương)
TH1 p2 : 5 dư 1 ⇒ p2 + 4 ⋮ 5 (là hợp số loại)
TH2 p2 : 5 dư 4 \(\Rightarrow\) p2 + 6 ⋮ 5 (là hợp số loại)
Từ những lập luận trên ta có:
p = 5 là giá trị số nguyên tố duy nhất thỏa mãn đề bài
Kết luận số nguyên tố thỏa mãn đề bài là 5.
Số 121