Cho a, b, c > 0. Chứng minh:\(a^3+b^3+c^3\ge3abc+\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nãy có sửa đề xong làm rồi nhưng tưởng sai nên bỏ thấy cô Chi cmt nên tui cũng nghĩ là sai giờ làm nha!
Đề: \(\hept{\begin{cases}x^3+2xy^2+12y=0\\x^2+8y^2=12\end{cases}}\)
~~~~~~~ Bài làm ~~~~~~~
Ta thấy nếu hệ có nghiệm \(\left(x,y\right)\Rightarrow y\ne0\)Vì nếu \(y=0\Rightarrow\hept{\begin{cases}x^2=19\\x^3=0\end{cases}\left(vl\right)}\)
Khi: \(y\ne0\)thay \(12=x^2+8y^2\)vào pt sau:
\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)
\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2+2\left(\frac{x}{y}\right)+8=0\)
Đặt: \(t=\frac{x}{y}\Rightarrow t^3+t^2+2t+8=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-t+4\right)=0\)
\(\Leftrightarrow t=-2\)(Vì \(t^2-y+4=\left(t-\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Nên suy ra: \(x=-2y\)
Thay \(x=-2y\)vào pt thứ 2 ta được:
\(4y^2+8y^2=12\)
\(\Leftrightarrow y^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
- Khi \(y=1\Rightarrow x=-2\)
- Khi \(y=-1\Rightarrow x=2\)
Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left(2;-1\right);\left(-2;1\right)\)
Em xem xem có bị nhầm đề không?. Trước kia cô từng thấy bài này nhưng mà \(8y^2\). Xem lại đề giúp cô nha!

A B C D I
Hướng dẫn:
+) ^IAB = ^IBC = ^IDB ( cùng chắn cung IB của đường tròn tâm O)
+) ^IDB = ^ICA ( BD//AC ; so le trong )
=> ^IAB = ^IBC = ^ICA

Cái này em thử nhá :33
Giả sử \(x\ge y\ge z\left(x,y,z\inℤ\right)\)
+) Xét TH : \(x=y=z\) Khi đó pt có dạng :
\(x^3+x^3+x^3=2021^{2002}\)
\(\Leftrightarrow3x^3=2021^{2002}\)
\(\Leftrightarrow x^3=\left(2021^{667}\right)^3\)
\(\Leftrightarrow x=2021^{667}\)
Do vậy : \(x=y=z=2021^{667}\)
+) Xét \(x>y>z\) ( Cái này chưa nghĩ :33 )

Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)

Nhận thấy x=0 không là nghiệm của hệ
Xét x khác 0 . Hệ pt tương đương \(\hept{\begin{cases}\frac{y}{x^3}+\frac{y^2}{x^2}=6\\\frac{1}{x^2}+y^2=5\end{cases}}\)
Đặt \(\frac{1}{x}=a,y=b\)ta được \(\hept{\begin{cases}a^2b\left(a+b\right)=6a\\\left(a+b\right)^2-2ab=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\\left(\frac{6}{ab}\right)^2-2ab=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{6}{ab}\\-2a^3b^3+36-5a^2b^2=0\end{cases}}\)
Đến đây giải ab là ra nhaaa :))))
Ta thử nha :)) Có gì sai thì chỉ bảo nhé :
BĐT cần chứng minh \(\Leftrightarrow a^3+b^3+c^3-3abc-\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)-\frac{3}{4}\left(a+b+c\right)\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(4a^2+4b^2+4c^2-4ab-4bc-4ca-3a^2+6ab-3b^2\ge\right)0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2+4c\left(c-b-a\right)\right]\ge0\) ( luôn đúng với a,b,c > 0 ?? )
Vậy ta có điều phải chứng minh ?
Xin phép làm lại nha :))
Ta có BĐT cần chứng minh \(\Leftrightarrow a^3+b^3+c^3-3abc-\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)-\frac{3}{4}\left(a+b+c\right)\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(4a^2+4b^2+4c^2-4ab-4ca-4bc-3a^2-3b^2+6ab\ge\right)0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b-2c\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh .