K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2024

a) ta có: M là trung điểm của AB, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN\) // \(AC\) hay \(MN\) // \(AD\)

ta có: N là trung điểm BC; D là trung điểm AC

⇒ ND là đường trung bình của \(\Delta ABC\)

⇒ ND // AB hay ND // MA

xét tứ giác NMAD, có:

MN // AD (chứng minh trên)

MA // ND (chứng minh trên)

⇒ tứ giác NMAD là hình bình hành

⇒ MD = AN

b) Xét tứ giác BMDN, có:

\(ND=BM\) (Vì ND là đường trung bình của ΔABC)

Lại có: ND // AB ⇒ ND // BM

⇒ tứ giác BMDN là hình bình hành

Lại có: O là trung điểm của đường chéo MN

⇒ O cũng là trung điểm đường chéo BD

⇒ 3 điểm B; O; D thẳng hàng

8 tháng 3 2024

loading...

a: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{9}=\dfrac{DC}{12}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

mà DB+DC=BC=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{15}{7}\)

=>\(DB=3\cdot\dfrac{15}{7}=\dfrac{45}{7}\left(cm\right);DC=4\cdot\dfrac{15}{7}=\dfrac{60}{7}\left(cm\right)\)

b: Vì \(\dfrac{BD}{CD}=\dfrac{45}{7}:\dfrac{60}{7}=\dfrac{3}{4}\)

nên \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

Bài 2:

a: Xét ΔOAD và ΔOCB có

OA=OB

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: Ta có: ΔOAD=ΔOCB

=>\(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)

Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{DAB}=\widehat{DCB}\)

Ta có: OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: Sửa đề: OI là phân giác của góc xOy

Ta có: ΔIAB=ΔICD

=>IB=ID và IA=IC

Xét ΔOIB và ΔOID có

OB=OD

IB=ID

OI chung

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>\(\widehat{xOI}=\widehat{yOI}\)

=>OI là phân giác của góc xOy

d: Sửa đề: OI\(\perp\)BD

ta có: OB=OD

=>O nằm trên đường trung trực của BD(1)

ta có: IB=ID

=>I nằm trên đường trung trực của BD(2)

Từ (1),(2) suy ra OI là đường trung trực của BD

=>OI\(\perp\)BD

e: Xét ΔOBD có \(\dfrac{OA}{AB}=\dfrac{OC}{CD}\)

 nên AC//BD

Bài 1:

a: ΔABC vuông cân tại A

=>AB=AC và \(\widehat{ABC}=\widehat{ACB}=45^0\)

Ta có: BO là phân giác của góc ABC

=>\(\widehat{ABO}=\widehat{CBO}=\dfrac{\widehat{ABC}}{2}=22,5^0\)

ta có: CO là phân giác của góc ACB

=>\(\widehat{ACO}=\widehat{BCO}=\dfrac{\widehat{ACB}}{2}=22,5^0\)

b: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\left(=22,5^0\right)\)

nên ΔOBC cân tại O

c: Ta có: ΔOBC cân tại O

=>\(\widehat{BOC}=180^0-2\cdot\widehat{OBC}=180^0-2\cdot22,5^0=135^0\)

d: Xét ΔAMC vuông tại A và ΔANB vuông tại A có

AC=AB

\(\widehat{ACM}=\widehat{ABN}\left(=22,5^0\right)\)

Do đó: ΔAMC=ΔANB

=>MC=BN

Ta có: OM+OC=CM

ON+OB=BN

mà OC=OB và CM=BN

nên OM=ON

Ta có: ΔAMC=ΔANB

=>AM=AN

Xét ΔAMO và ΔANO có

AM=AN

MO=NO

AO chung

Do đó: ΔAMO=ΔANO

=>\(\widehat{AOM}=\widehat{AON}\)

=>OA là phân giác của góc MON

e: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

f: ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)CB

giúp em với ạ, em cần gấp, em cảm ơn nhiều

AH
Akai Haruma
Giáo viên
9 tháng 3 2024

Đề không rõ ràng. Bạn xem lại.

NV
8 tháng 3 2024

a.

Diện tích mảnh vườn là:

\(42\times42=1764\left(m^2\right)\)

b.

Số ki-lô-gam rau thu hoạch được là:

\(1764\times5:2=4410\left(kg\right)\)

8 tháng 3 2024

Diện tích mảnh vườn là: 42 x 4 = 168 m2

Trên cả mảnh vườn đó người ta thu hoạch được số ki -lô -gam rau là: 5 x (168:2) = 420 kg

Đáp số: a 168m2  b 420 kg rau

nếu đúng thì tick cho mik nhá

8 tháng 3 2024

ol

NV
8 tháng 3 2024

\(6x=3y=5z\Rightarrow\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{5}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2x}{10}=\dfrac{3y}{30}=\dfrac{z}{6}=\dfrac{2x+3y+z}{10+30+6}=\dfrac{-92}{46}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2.5=-10\\y=-2.10=-20\\z=-2.6=-12\end{matrix}\right.\)

a: Sửa đề: MH//CD

Xét ΔADC có

M,H lần lượt là trung điểm của AD,AC

=>MH là đường trung bình của ΔADC

=>MH//DC và \(MH=\dfrac{DC}{2}\)

Xét ΔCABcó 

N,H lần lượt là trung điểm của CB,CA

=>NH là đường trung bình của ΔCAB

=>NH//AB và \(NH=\dfrac{AB}{2}\)

b: MH+HN<=MN

=>\(\dfrac{1}{2}\left(AB+CD\right)< =MN\)

=>\(MN>=\dfrac{1}{2}\left(AB+CD\right)\)

Gọi d=ƯCLN(2n+3;4n+4)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\4n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+6⋮d\\4n+4⋮d\end{matrix}\right.\)

=>\(4n+6-4n-4⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+4)=1

=>\(\dfrac{2n+3}{4n+4}\) là phân số tối giản

8 tháng 3 2024

15x32-23x15

=15x(34-23)

=15x11

=165

\(15\cdot36-23\cdot15\)

\(=15\left(36-23\right)\)

\(=15\cdot13=195\)