Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=9. Tìm giá trji lớn nhất của biểu thức
\(T=\frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}-\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
* Áp dụng hệ thức
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}\)
\(\Leftrightarrow\frac{1}{AC^2}=\frac{25}{576}-\frac{1}{36}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{64}\Rightarrow AC=8\)cm
* Áp dụng hệ thực : \(AC^2=HC.BC\)(*)
mà theo Pytago : \(AB^2+AC^2=BC^2\Rightarrow BC^2=36+\frac{576}{25}=\frac{1476}{25}\)
\(\Rightarrow BC=\frac{6\sqrt{41}}{5}\)Thay vào (*) ta được
\(HC.\frac{6\sqrt{41}}{5}=64\Rightarrow HC\approx8,33\)cm
Điều kiện:\(\hept{\begin{cases}x\ge0\\9-x\ne0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne9\\x\ne\pm4\end{cases}}\)
P=(\(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\))\(\frac{x\left(3-\sqrt{x}\right)}{3+\sqrt{x}}\)
=\(\frac{2\sqrt{x}+3-\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\).\(\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
=\(\frac{3+\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
=\(\frac{x}{\sqrt{x}-2}\)(với x>=0; x khác 9; x khác +- 4)
thế đi, ra y = 1/(m-3) xong thay vào pt 1 ,ở trên á, đc x = 3/(m-3)
Thay vào X+y = 1. =]
. Đã tồn tại ở dạng 2 chân
– Thì đừng hành xử theo kiểu 4 cẳnglam1234 nhá
a) Gọi vận tốc xuôi dòng là \(x\left(km/h\right),x>20\).
Theo bài ra, ta có phương trình:
\(\frac{120}{x}+\frac{120}{x-20}=5\)
\(\Rightarrow120\left(x-20\right)+120x=5x\left(x-20\right)\)
\(\Leftrightarrow x^2-68x+480=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=60\left(tm\right)\\x=8\left(l\right)\end{cases}}\)
b) \(\hept{\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}}\)
Với \(m=0\): \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Dễ thấy thỏa mãn.
Với \(m\ne0\):
\(\hept{\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-my=2-4m\\m^2x+my=3m^2+m\end{cases}}\Rightarrow\left(m^2+1\right)x=3m^2-3m+2\)
\(\Leftrightarrow x=\frac{3m^2-3m+2}{m^2+1}\Rightarrow y=3m+1-mx=\frac{4m^2+m+1}{m^2+1}\)
suy ra đpcm.
Ta có:
\(\hept{\begin{cases}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{cases}}\)
\(\Rightarrow\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-4\right)\left(y_0-1\right)\)
\(\Leftrightarrow-x_0^2+5x_0-6=y_0^2-5y_0+4\)
\(\Leftrightarrow x_0^2+y_0^2-5\left(x_0+y_0\right)+10=0\)
Sau hai tháng số tiền cả vốn lẫn lãi bác Bình nhận được là:
\(50\left(1+1\%\right)^2=51,005\) (triệu đồng)
Bán kính của hình tròn đó là :
8 : 2 = 4 ( cm )
Đáp số : 4 cm
Học tốt !!!!!!!!!!!!!!!
Bán kính của hình tròn đó là
8 chia 2 = 4 [ cm ]
Đ/ S 4 cm
vì đường kính gấp 2 lần bán kính vậy đó nha
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3