-1/2x-9/12=0,25 giải cho mik bài tìm x với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 10cm= 1dm
Cạnh đáy bể:
20:4=5(dm)
Diện tích đáy bể:
5 x 5 = 25(dm2)
Thể tích viên đá:
25 x 1= 25(dm3)
Đ.số:25 dm3
\(2x-x^0=3^5:3^3\\ 2x-1=3^{5-3}\\ 2x-1=3^2\\ 2x-1=9\\ 2x=9+1\\ 2x=10\\ x=\dfrac{10}{2}\\ x=5\)
Bài này mới ra mà bạn? vậy chắc bạn chờ một tí rồi thử lại xem nhé.
Đó là bài của bộ sách nào vậy em, em nói cụ thể ra thì cô mới test được
\(\dfrac{28^7.5^8.15^9}{14^8.25^9.6^{12}}=\dfrac{2^7.14^7.5^8.5^9.3^9}{14^7.14.\left(5^2\right)^9.3^{12}.2^{12}}\\ =\dfrac{14^7.5^{17}.3^9.2^7}{14^7.14.5^{17}.5.3^9.3^3.2^7.2^5}\\ =\dfrac{1}{14.5.3^3.2^5}=\dfrac{1}{14.5.27.32}\\ =\dfrac{1}{60480}\)
\(\dfrac{28^7.5^8.15^9}{14^8.25^9.6^{12}}\\ =\dfrac{2^7.14^7.5^8.5^9.3^9}{14^8.5^9.5^9.3^{12}.2^{12}}\\ =\dfrac{1}{14.5.3^3.2^5}\\ =\dfrac{1}{60480}\)
a) \(3^{54}\)
\(2^{200}=4^{100}>3^{54}\)
\(\Rightarrow3^{54}< 2^{200}\)
b) \(15^{12}=3^{12}.5^{12}\)
\(1^3.125^3=\left(5^3\right)^3=5^9< 3^{12}.5^{12}\)
\(\Rightarrow15^{12}>1^3.125^3\)
c) \(78^{12}-78^{11}=78^{11}.\left(7-1\right)=78^{11}.6\)
\(78^{11}-78^{10}=78^{10}.\left(7-6\right)=78^{10}.6< 78^{11}.6\)
\(\Rightarrow78^{12}-78^{11}>78^{11}-78^{10}\)
d) \(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.72>27^{44}\)
\(\Rightarrow72^{45}-72^{44}>27^{44}\)
e) \(3^{39}=\left(3^3\right)^{13}=27^{13}>11^{11}\)
\(\Rightarrow3^{39}>11^{11}\)
1. ours->our
2. its their->they're their
3. my's->mine
4. he's->his
5. your->yours
6. mine->me
7. they're->their
8. dog water->dog's water
So sánh
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\) ; \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>1\) ( vì tử > mẫu )
Do đó: \(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}>\dfrac{1999^{2000}+1+1998}{1999^{1999}+1+1998}=\dfrac{1999^{2000}+1999}{1999^{1999}+1999}=\dfrac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}=\dfrac{1999^{1999}+1}{1999^{1998}+1}=A\)
Vậy B > A
Chúc bạn học tốt
\(B=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\)
\(\Rightarrow4B=4\cdot\left(1\cdot2\cdot3+2\cdot3\cdot4+...+98\cdot99\cdot100\right)\)
\(\Rightarrow4B=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+...+98\cdot99\cdot100\cdot\left(101-97\right)\)
\(\Rightarrow4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4-....+98\cdot99\cdot100\cdot101-97\cdot98\cdot99\cdot100\)
\(\Rightarrow4B=98\cdot99\cdot100\cdot101\)
\(\Rightarrow B=\dfrac{98\cdot99\cdot100\cdot101}{4}\)
\(\Rightarrow B=25\cdot98\cdot99\cdot101\)
B=1x2x3+2x3x4+...+98x99x100
=>4B=1x2x3x(4-0)+2x3x4x(5-1)+...+98x99x100x(101-97)
4B=1x2x3x4+2x3x4x5-1x2x3x4+...+98x99x100x101-97x98x99x100
4B=98x99x100x101
=>B=\(\dfrac{98\cdot99\cdot100\cdot101}{4}\)=24497550.
\(-\dfrac{1}{2}x-\dfrac{9}{12}=0,25\\ \\ \Rightarrow-\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{4}\\ \\ \Rightarrow-\dfrac{1}{2}x=\dfrac{1}{4}+\dfrac{3}{4}=1\\ \\ \Rightarrow x=1:\left(-\dfrac{1}{2}\right)=-2\)
-\(\dfrac{1}{2}\)\(x\) - \(\dfrac{9}{12}\) = 0,25
- \(\dfrac{1}{2}\)\(x\) = 0,25 + \(\dfrac{9}{12}\)
-\(\dfrac{1}{2}\)\(x\) = \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
-\(\dfrac{1}{2}\)\(x\) = 1
\(x\) = -1 : \(\dfrac{1}{2}\)
\(x\) =- 2