Cho tam giác ABC vuông tại A,có AC>AB.Kẻ AH vuông BC.Trên tia HC lấy điêm D sao cho HD=HB.Kẻ CF vuông AD kéo dài
a)Chứng minh rằng:AHB=AHD
b)Chứng minh rằng BAH=ACB
c)Chứng minh CB là tia phân giác của góc ACE
d)Gọi giao điểm của AH và CE là K.Chứng minh KD//AB
e)So sánh AC và CD
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b: \(\widehat{BAH}+\widehat{ABC}=90^0\)(ΔHBA vuông tại H)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{BAH}=\widehat{ACB}\)
a) xét ΔAHB và ΔAHD, có:
AH là cạnh chung
\(\widehat{BHA}=\widehat{DHA}=90^0\)
HB = HD (giả thiết)
-> ΔAHB = ΔAHD (c-g-c)
b) xét ΔBHA có:
\(\widehat{HAB}=\widehat{BHA}-\widehat{B}\) (1)
xét ΔACB có:
\(\widehat{BCA}=\widehat{BAC}-\widehat{B}\) (2)
từ (1) (2) => \(\widehat{BAH}=\widehat{ACB}\) (vì \(\widehat{BHA}=\widehat{BAC}\))
c) trên đề ghi là điểm F mà xuống câu c thì lại là điểm E, vậy thì điểm F và điểm E là như nhau nghen
ta có: \(\widehat{HAD}=\widehat{AHD}-\widehat{HDA}\)
\(\widehat{FCD}=\widehat{DFC}-\widehat{FDC}\)
mà \(\widehat{AHD}=\widehat{CFD}=90^0\)
\(\widehat{HDA}=\widehat{FDC}\left(dd\right)\)
\(\Rightarrow\widehat{HAD}=\widehat{FCD}\) (3)
vì ΔHAB = ΔHAD (câu a), nên \(\widehat{HAB}=\widehat{HAD}\) (2 góc tương ứng) (4)
mà \(\widehat{HAB}=\widehat{HCA}\) (câu b) (5)
từ (3) (4) (5) => \(\widehat{DCA}=\widehat{DCF}\)
=> CB là tia phân giác của góc ACF
d) vì góc DAC = góc DCA nên tam giác DAC là tam giác cân
=> DA = DC
xét tam giác VUÔNG HDA và tam giác VUÔNG FDC, có:
DA = DC (cmt) (8)
góc HDA = góc FDC (đối đỉnh)
=> tam giác HDA = tam giác FDC (ch-gn)
=> DH = DF (6)
vì góc HAC = góc FCA , nên tam giác AKC là tam giác cân
=> KA = KC (7)
từ (6) (7) (8) => KD là đường trung trực của tam giá KAC
=> KD vuông góc với AC
mà AB vuông góc với AC
nên KD // AB (đpcm)
e) xét tam giác AFC có góc F là góc vuông
=> AC là cạnh lớn nhất
=> AC > CD