Giải phương trình \(\dfrac{16}{x-3}-\dfrac{15}{x+1}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}\)
<=> \(\frac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}-\frac{x+2}{\left(x-3\right)\left(x+2\right)}=0\)
<=> \(\frac{x^2-4x+3}{\left(x-3\right)\left(x+2\right)}=0\)
=> x2 - 4x + 3 = 0
Δ' = b'2 - ac = (-2)2 - 3 = 1
Δ' > 0, áp dụng công thức nghiệm thu được x1 = 3 (ktm) ; x2 = 1 (tm)
Vậy pt có nghiệm x = 1
ĐKXĐ : -1 ≤ x ≤ 3
Bình phương hai vế
<=> x + 1 = x2 - 6x + 9
<=> x2 - 7x + 8 = 0
Δ = b2 - 4ac = (-7)2 - 4.8 = 49 - 32 = 17
Δ > 0, áp dụng công thức nghiệm thu được \(\hept{\begin{cases}x_1=\frac{7+\sqrt{17}}{2}\left(ktm\right)\\x_2=\frac{7-\sqrt{17}}{2}\left(tm\right)\end{cases}}\)
Vậy pt có nghiệm \(x=\frac{7-\sqrt{17}}{2}\)
\(\sqrt{5x-x^2}+2x^2-10x+6=0\)
ĐKXĐ : \(0\le x\le5\)
<=> \(\sqrt{5x-x^2}-2\left(5x-x^2\right)+6=0\)
Đặt \(\sqrt{5x-x^2}=t\)( t ≥ 0 ) ta được phương trình :\(t-2t^2+6=0\)(*)
Δ = b2 - 4ac = 1 + 48 = 49
Δ > 0 nên (*) có hai nghiệm phân biệt t1 = -3/2 (ktm) ; t2 = 2 (tm)
=> \(\sqrt{5x-x^2}=2\)
<=> 5x - x2 = 4 ( bình phương hai vế )
<=> x2 - 5x + 4 = 0 (1)
Dễ thấy (1) có a + b + c = 1 - 5 + 4 = 0 nên có hai nghiệm phân biệt x1 = 1 (tm) ; x2 = c/a = 4 (tm)
Vậy phương trình đã cho có hai nghiệm x1 = 1 ; x2 = 4
ĐKXĐ : x ≥ 1
<=> \(x^2\left(x-1\right)-x\sqrt{x-1}-2=0\)
Đặt \(x\sqrt{x-1}=t\)( t ≥ 0 )
pt <=> t2 - t - 2 = 0
<=> ( t + 1 )( t - 2 ) = 0
<=> t = -1 (ktm) hoặc t = 2 (tm)
=> \(x\sqrt{x-1}=2\)
<=> x2( x - 1 ) = 4 ( bình phương hai vế )
<=> x3 - x2 - 4 = 0
<=> x3 - 2x2 + x2 - 4 = 0
<=> x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
<=> ( x - 2 )( x2 + x + 2 ) = 0
<=> x - 2 = 0 hoặc x2 + x + 2 = 0
+) x - 2 = 0 <=> x = 2 (tm)
+) x2 + x + 2 = 0
Δ = b2 - 4ac = 1 - 8 = -7
Δ < 0 => vô nghiệm
Vậy pt có nghiệm x = 2
ĐKXĐ : x ≥ 0
<=> \(x-5\sqrt{x}+2\sqrt{x}-10=0\)
<=> \(\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)=0\)
<=> \(\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)=0\)(1)
Vì \(\sqrt{x}+2\ge2>0\forall x\ge0\)
nên (1) <=> \(\sqrt{x}-5=0\)<=> \(\sqrt{x}=5\)<=> x = 25 (tm)
Vậy pt có nghiệm x = 25
ko có radian thì ghi \(2>\frac{\left(p-2\right)q}{p}\) cho rồi
\(x^4+\sqrt{x^2+2}=2\)
Đặt t = x2
pt <=> \(t^2+\sqrt{t+2}=2\)
<=> \(\sqrt{t+2}=2-t^2\)( 0 ≤ t ≤ √2 )
Bình phương hai vế
<=> t + 2 = t4 - 4t2 + 4
<=> t4 - 4t2 - t + 2 = 0
<=> t4 - 2t3 + 2t3 - 4t2 - t + 2 = 0
<=> t3( t - 2 ) + 2t2( t - 2 ) - ( t - 2 ) = 0
<=> ( t - 2 )( t3 + 2t2 - 1 ) = 0
<=> ( t - 2 )( t3 + t2 + t2 - 1 ) = 0
<=> ( t - 2 )[ t2( t + 1 ) + ( t - 1 )( t + 1 ) ] = 0
<=> ( t - 2 )( t + 1 )( t2 + t - 1 ) = 0
<=> t - 2 = 0 hoặc t + 1 = 0 hoặc t2 + t - 1 = 0
<=> t = \(\frac{-1+\sqrt{5}}{2}\)( đã loại các nghiệm ktm )
=> \(x^2=\frac{-1+\sqrt{5}}{2}\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{5}}{2}}\)
Vậy ...
a) - Với \(x>0,x\ne1\), ta có:
\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)
\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)
\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(A=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(A=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(A=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)
\(A=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)
Vậy với \(x>0,x\ne1\)thì \(A=\frac{1}{\sqrt{x}}\)
\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)
\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)
\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)
\(=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)
\(=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)
\(=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)
b) \(B=\left(x-\sqrt{x}+1\right)\cdot A=\frac{1}{\sqrt{x}}\left(x-\sqrt{x}+1\right)=\frac{x}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\sqrt{x}-1\)
Xét hiệu B - 1 ta có : \(B-1=\frac{1}{\sqrt{x}}+\sqrt{x}-2=\frac{1}{\sqrt{x}}+\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Dễ thấy \(\hept{\begin{cases}\sqrt{x}>0\forall x>0\\\left(\sqrt{x}-1\right)^2\ge0\forall x\ge0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\forall x>0\)
Đẳng thức xảy ra <=> x = 1 ( ktm ĐKXĐ )
Vậy đẳng thức không xảy ra , hay chỉ có B - 1 > 0 <=> B > 1 ( đpcm )
a, Với \(x\ge0;x\ne1\)
\(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-1}-\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\frac{2x+2\sqrt{x}-\sqrt{x}-1-2x+2\sqrt{x}-\sqrt{x}-1}{x-1}=\frac{2\sqrt{x}-2}{x-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)
b, Ta có P = 3/4 hay \(\frac{2}{\sqrt{x}+1}=\frac{3}{4}\)ĐK : \(\sqrt{x}+1>0\)
\(\Rightarrow8=2\sqrt{x}+3\Leftrightarrow2\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\frac{5}{2}\Leftrightarrow x=\frac{25}{4}\)
a, \(P= \dfrac{-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
b, \(x= \dfrac{1}{9} ; x= 9\)
c, \(x= 0 ; x= 16\)
ĐKXĐ : \(\hept{\begin{cases}x\ne3\\x\ne-1\end{cases}}\)
<=> \(\frac{16x+16}{\left(x-3\right)\left(x+1\right)}-\frac{15x-45}{\left(x-3\right)\left(x+1\right)}=\frac{4\left(x-3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)
<=> \(\frac{x+61}{\left(x-3\right)\left(x+1\right)}=\frac{4x^2-8x-12}{\left(x-3\right)\left(x+1\right)}\)
=> 4x2 - 8x - 12 - x - 61 = 0
<=> 4x2 - 9x - 73 = 0
Δ = b2 - 4ac = (-9)2 - 4.4.(-73) = 1249
Δ > 0, áp dụng công thức nghiệm thu được \(\hept{\begin{cases}x_1=\frac{9+\sqrt{1249}}{8}\\x_2=\frac{9-\sqrt{1279}}{8}\end{cases}\left(tm\right)}\)
Vậy ...