K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

bài này mình tưởng có câu 3 nx mà . Nếu  có câu 1, 2 thôi thì dễ

a) AB là đường kính của (O) , \(k\in\left(O\right)\)

=>\(\widehat{AKB}=90^0\)

\(\widehat{AKB}=\widehat{EHB}\left(=90^0\right)\)

=> tứ giác HEKB nội tiếp đường tròn

=> H , E ,K ,B nội tiếp đường tròn

2) AB là đường kính

\(MN\perp AB\equiv H\)

=> H là trung điểm của MN

     \(\widebat{AM}=\widebat{NA}\)

=>\(\widehat{AMN}=\widehat{MKA}\)

xét tam giác AME zà tam giác AKM có

\(\widehat{AMN}=\widehat{MKA}\)

\(\widehat{MAE}chung\)

=>\(\Delta AME~\Delta AKM\left(g.g\right)\)

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

26 tháng 3 2020

\(\frac{\sqrt{5}-2}{5+2\sqrt{5}}-\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}} \)

\(=\)\(\frac{\sqrt{5}-2}{\sqrt{5}\left(\sqrt{5}+2\right)}-\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}}\)

\(=\)\(\frac{\sqrt{5}-2-\sqrt{5}+\sqrt{5}+2}{\sqrt{5}\left(\sqrt{5}+2\right)}\)

\(=\)\(\frac{\sqrt{5}}{\sqrt{5}\left(\sqrt{5}+2\right)}\)

\(=\)\(\frac{1}{\sqrt{5}+2}\)