Tìm tất cả các cặp số nguyên x và y thỏa mãn (x+y+1)(xy+x+y)=5+2(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x+y\ge25\\y\le2x+18\\y\ge x^2+4x\end{cases}}\)
<=> \(\hept{\begin{cases}y\ge25-x\\y\le2x+18\\y\ge x^2+4x\end{cases}}\)
Khi đó: \(2x+18\ge25-x\)<=> \(x\ge\frac{7}{3}\)(1)
\(2x+18\ge x^2+4x\Leftrightarrow x^2+2x-18\le0\Leftrightarrow-1-\sqrt{19}\le x\le-1+\sqrt{19}\)(2)
Từ (1) ; (2) => \(\frac{7}{3}\le x\le-1+\sqrt{19}\); x nguyên dương => x = 3
=> \(\hept{\begin{cases}y\ge25-3\\y\le2.3+18\\y\ge3^2+4.3\end{cases}}\)=> y = 22 hoặc y = 23 hoặc y = 24
Thử lại thỏa mãn.
Vậy có những nghiệm ( 3; 22) ; ( 3; 23) ; (3;24)
Cách giải của bạn Lê Nhật Khôi có phần khồn đúng nhưng nó đã gợi cho mình ý tưởng như này
\(HPT\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x^2+y^2+1\right)=y\\2y\left(y+3\right)^2=2-z\\\left(z-2\right)\left(z+1\right)^2=1-x\end{cases}}\)
\(\Rightarrow-2y\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)=y\Leftrightarrow y\left[2\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)+1\right]=0\)
\(\Rightarrow y=0\Rightarrow x=1\Rightarrow\orbr{\begin{cases}z=-1\\z=2\end{cases}}\)
Cách này của mình là suy đoán thui nha
Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)
\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)
Chia TH:
TH1:p=q
Tương tự p=r thì cũng thu về p=q=r
TH2: nguyên cái trong ngoặc vuông
Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)
Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)
Cũng thu đc p=q=r
Do đó từ 2 TH cũng thu về PT:
\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)
Rồi vậy không biết làm tiếp :D
À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó
\(B=\frac{5}{\sqrt{x}+1}\) nguyên nên \(5⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;4\right\}\Leftrightarrow x=2;x=0\)
Vậy x=2;x=0 thì B nguyên
Để B nguyên thì 5\(⋮\)\(\sqrt{x}\)+1
\(\Leftrightarrow\)\(\sqrt{x}+1\in\hept{1;5;-1;-5})\)
\(\Leftrightarrow\sqrt{x}\in(0;4)\Leftrightarrow x=2;x=0\)
Vậy x=2;x=0 thì B nguyên
a, \(P_1:Aa\left(đỏ\right)\times Aa\left(đỏ\right)\)
\(G:\frac{1}{2}A,\frac{1}{2}a\) \(\frac{1}{2}A,\frac{1}{2}a\)
\(F_1:\frac{1}{4}AA,\frac{2}{4}Aa,\frac{1}{4}aa\)Tỉ lệ phân li kiểu gen :\(\frac{1}{4}AA,\frac{2}{4}Aa,\frac{1}{4}aa\)
b, \(P_2:Aa\left(đỏ\right)\times aa\left(trắng\right)\)
\(G:\frac{1}{2}A,\frac{1}{2}a\) \(a\)
\(F_1:\frac{1}{2}Aa,\frac{1}{2}aa\)Tỉ lệ phân li kiểu gen:\(1:1\)
Rút \(b=3-a\Rightarrow2\ge b\ge1\left(\text{vì }a,b\le2\right)\)
Tương tự: \(2\ge a\ge1\). Do đó:
\(\left(2-a\right)\left(a-1\right)+\left(2-a\right)\left(b-1\right)\ge0\)\(\Leftrightarrow5\ge a^2+b^2\)
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(2;1\right);\left(1;2\right)\right\}\)
\(\sqrt{4-2\sqrt{3}}\)+\(\sqrt{19-8\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.4+4^2}\)
=\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-4\right)^2}\)\(=\sqrt{3}-1+4-\sqrt{3}=3\)