Xác định mùa mưa, mùa lũ trên sông, nhận xét mối quan hệ giữa mùa mưa và mùa lũ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)\ge\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)^2\)
\(\Rightarrow\sqrt{a^2+\dfrac{1}{b+c}}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)=\dfrac{1}{\sqrt{17}}\left(4a+\dfrac{1}{\sqrt{b+c}}\right)\)
Tương tự:
\(\sqrt{b^2+\dfrac{1}{a+c}}\ge\dfrac{1}{\sqrt{17}}\left(4b+\dfrac{1}{\sqrt{a+c}}\right)\) ; \(\sqrt{c^2+\dfrac{1}{a+b}}\ge\dfrac{1}{\sqrt{17}}\left(4c+\dfrac{1}{\sqrt{a+b}}\right)\)
Cộng vế:
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Cũng theo Bunhiacopxki:
\(1.\sqrt{a+b}+1.\sqrt{b+c}+1\sqrt{c+a}\le\sqrt{\left(1+1+1\right)\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Bài này giải bằng Bunhiacopxki (kết hợp nguyên lý Dirichlet) chứ AM-GM thì e là không ổn:
Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có 2 số cùng phía so với 1, không mất tính tổng quát, giả sử đó là \(b^2\) và \(c^2\)
\(\Rightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\)
\(\Rightarrow b^2c^2+1\ge b^2+c^2\)
\(\Rightarrow b^2c^2+2b^2+2c^2+4\ge3b^2+3c^2+3\)
\(\Rightarrow\left(b^2+2\right)\left(c^2+2\right)\ge3\left(b^2+c^2+1\right)\)
\(\Rightarrow\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a^2+1+1\right)\left(1+b^2+c^2\right)\ge3\left(a+b+c\right)^2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(2+7\right)\left(2a^2+\dfrac{7}{b^2}\right)\ge\left(2a+\dfrac{7}{b}\right)^2\)
\(\Rightarrow\sqrt{2a^2+\dfrac{7}{b^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{b}\right)\)
Tương tự: \(\sqrt{2b^2+\dfrac{7}{c^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{c}\right)\) ; \(\sqrt{2c^2+\dfrac{7}{a^2}}\ge\dfrac{1}{3}\left(2c+\dfrac{7}{a}\right)\)
Cộng vế:
\(VT\ge\dfrac{1}{3}\left(2a+2b+2c+\dfrac{7}{a}+\dfrac{7}{b}+\dfrac{7}{c}\right)=2+\dfrac{7}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(VT\ge2+\dfrac{7}{9}.\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (do \(a+b+c=3\))
\(VT\ge2+\dfrac{7}{9}.\left(\sqrt{a}.\sqrt{\dfrac{1}{a}}+\sqrt{b}.\sqrt{\dfrac{1}{b}}+\sqrt{c}.\sqrt{\dfrac{1}{c}}\right)^2=9\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
ý kiến của mk thôi nha chắc ko đúng đâu
x^2 - 6x + 12 = 259
x^2 - 6x - 247 = 0
(x+13)(x-19) = 0
x = -13;19
ta có f(x)=259
=>f(259)=2592-6*259+12
=>f(259)=67081-1554+12
=>f(259)=-65515
* là dấu nhân
\(P=\frac{x}{\sqrt{x}-3}\Leftrightarrow P-12=\frac{x}{\sqrt{x}-13}-12\)
\(\Leftrightarrow P-12=\frac{x-12\sqrt{x}+36}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\)
Mà \(\left(\sqrt{x}-6\right)^2\ge0va\sqrt{x}-3>0\left(x>9\right)\)
\(\Rightarrow\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\ge0\)
Dấu = xảy ra <=> \(\left(\sqrt{x}-6\right)^2=0\Leftrightarrow\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
Lúc đó \(P-12=0\Rightarrow P=12\)
Vậy GTNN của \(P=12\Leftrightarrow x=36\)
Hìiiiiiiiiiiiiiiiiiiiiiiiiiiiii