K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

\(\sqrt[]{x+2}=-100\)

vì \(\sqrt[]{x+2}\ge0\)

Nên phương trình trên vô nghiệm

26 tháng 8 2023

vì �+2≥0

Nên phương trình trên vô nghiệm

Chúc bạn nha

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

25 tháng 8 2023

Để chứng minh rằng ba điểm B, A và C thẳng hàng, chúng ta cần sử dụng các thông tin đã cho và các quy tắc trong hình học.

Gọi G là giao điểm của đường thẳng FA và đường thẳng CE.

Vì tam giác EFM vuông tại E, nên ta có: ∠EMF = 90° Vì FA là phân giác của ∠EMF, nên ta có: ∠FAG = ∠GEM Vì CE là tia đối của tia EF,

nên ta có: ∠GEC = ∠FEM Vì CE = MB, nên ta có: ∠ECG = ∠MBC

Vì ∠GEC = ∠FEM và ∠ECG = ∠MBC, nên ta có: ∠FEM = ∠MBC Vì ∠FAG = ∠GEM và ∠FEM = ∠MBC,

nên ta có: ∠FAG = ∠MBC

Vậy ta có hai góc cùng nhìn trên cùng một đường thẳng, nên ta có: B, A, C thẳng hàng.

Vậy ta đã chứng minh được rằng ba điểm B, A và C thẳng hàng.

26 tháng 8 2023

a) \(1,28=\dfrac{128}{100}=\dfrac{32}{25}\)

b) \(-3,12=-\dfrac{312}{100}=-\dfrac{78}{25}\)

25 tháng 8 2023

\(5^{12}:5^{x+2}=\left(-5\right)^3.\left(-5\right)^7\)

\(\Rightarrow5^{12-x-2}=\left(-5\right)^{3+7}\)

\(\Rightarrow5^{10-x}=\left(-5\right)^{10}\)

\(\Rightarrow5^{10-x}=5^{10}\)

\(\Rightarrow10-x=10\)

\(\Rightarrow x=0\)

25 tháng 8 2023

\(\Rightarrow\dfrac{z}{5}=\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z-x+y}{5-3+4}=1\)

\(\Rightarrow x=3;y=4;z=5\)

25 tháng 8 2023

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x+y}{3-4+5}=\dfrac{6}{4}=\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{3}{2}\cdot3=4,5\)

\(y=\dfrac{3}{2}\cdot4=6\)

\(z=\dfrac{3}{2}\cdot5=7,5\)

 

25 tháng 8 2023

1)

xy + x - 4y = 12

x + y(x - 4) = 12

y(x - 4) = 12 - x

\(y=\dfrac{-x+12}{x-4}\)

Vì \(x,y\inℕ\) nên

\(\left(-x+12\right)⋮\left(x-4\right)\)

\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)

\(16⋮\left(x-4\right)\)

\(\left(x-4\right)\inƯ\left(16\right)\)

\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)

\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)

\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)

\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

2)

(2x + 3)(y - 2) = 15

\(\left(2x+3\right)\inƯ\left(15\right)\)

\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Ta lập bảng

2x + 3 1 -1 3 -3 5 -5 15 -15
y - 2 15 -15 5 -5 3 -3 1 -1
(x; y) (-1; 17) (-2; -13) (0; 7) (-3; -3) (1; 5) (-4; -1) (6; 3) (-9; 1)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)

24 tháng 8 2023

các thầy cô ơi giúp em vs ạ mai em phải nộp r ạ!!!

 

24 tháng 8 2023

\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{33}{99}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

24 tháng 8 2023

\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{98.99}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}\\ =\dfrac{1}{3}-\dfrac{1}{99}\\ =\dfrac{32}{99}\)