Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s f ( x) = 0 có nghiệm nguyên là a
Khi đó: \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)
Ta có: f ( 2017 ) . f(2018) = 2019
<=> ( 2017 - a ) . g(2017). ( 2018 - x ) . g ( 2018) = 2019
<=> ( 2017 - a ) . ( 2018 - a ) . g ( 2018) . g(2017).= 2019
Nhận xét thấy một điều rằng ( 2017 - a ) và (2018 - a ) là hai số nguyên liền nhau
=> ( 2017 - a ) . ( 2018 - a) \(⋮\)2 => VT \(⋮\)2 => 2019 \(⋮\)2 điều này vô lí
Vậy không tồn tại; hay f(x) = 0 không có nghiệm nguyên.
Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)Câu a)
Dễ chứng minh ATNO là tứ giác nội tiếp
Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp
Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)
Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)
Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)
Cho nên: \(\widehat{BMN}=\widehat{TNA}\)
Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)
\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)
Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)
Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)
Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)
Vậy \(\widehat{BAN}=\widehat{CAM}\)
___________________________________________________________________________________________________________
Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)
Gọi giao DK cắt BF tại P
Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)
Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)
Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)
Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)
\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)
\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)
Từ (1);(2) và (3) suy ra đpcm
P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.
Ta có biểu thức:
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
\(=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)+\left(y+1\right)\left(1-\frac{z^2}{z^2+1}\right)+\left(z+1\right)\left(1-\frac{x^2}{x^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y}{2}\right)+\left(y+1\right)\left(1-\frac{z}{2}\right)+\left(z+1\right)\left(1-\frac{x}{2}\right)\)
\(\Leftrightarrow Q\ge\left(x+y+z+3\right)-\frac{xy+yz+xz+x+y+z}{2}\)
\(\Leftrightarrow Q\ge6-\frac{xy+yz+xz+3}{2}\)
Mà \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)
\(\Rightarrow Q\ge6-\frac{3+3}{2}=3\)
Vậy Min Q=3. Dấu "=" xảy ra khi và chỉ khi x=y=z=1
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu " = " xảy ra khi \(3a=5b;3a+5b=12\Leftrightarrow a=2;b=\frac{6}{5}\)
Nguồn: Mr Lazy