K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

điều kiện xác đinh \(x\ge-\frac{1}{2}\)

ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)

\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)

\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)

zậy \(S=\left\{0\right\}\)

31 tháng 3 2020

ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành 

\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)

Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)

Giải hệ này ta được x=0

Vậy PT đã cho có nghiệm duy nhất x=0

30 tháng 3 2020

\(\hept{\begin{cases}xy+3=3x+y\\x^2+2y^2+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-3\right)=0\\x^2+2y^2+y=1\left(2\right)\end{cases}}\)

Xét: x=1

\(\Rightarrow\left(2\right)\Leftrightarrow2y^2+y=0\Leftrightarrow\hept{\begin{cases}y=0\\y=-\frac{1}{2}\end{cases}}\)

Xét: y=3

\(\Rightarrow\left(2\right)\Leftrightarrow x^2+2.3^2+3>0\)=> vô nghiệm.

KL:.....

29 tháng 3 2020

a) \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\left(ĐK:x\ge1;x\ne3\right)\)

\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}=\sqrt{x-1}+\sqrt{2}\)

c) \(P=\sqrt{x-1}+\sqrt{2}\)

Vì \(\sqrt{x-1}\ge0\forall x\inĐK\)

=> P\(\ge\sqrt{2}\)

Dấu "=" <=> x=1

Vậy MinP=\(\sqrt{2}\)tại x=1

28 tháng 3 2020

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

29 tháng 3 2020

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)

29 tháng 3 2020

Biến đối tương đương ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm BĐT Cauchy 3 số ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)

Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1

28 tháng 3 2020

Biến đổi tương đương ta có : 

\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)

\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm bất đẳng thức Cauchy 3 số ta có : 

a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)

Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1

31 tháng 3 2020

Mình áp dụng BĐT AM-GM  đến dòng 

\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)

Áp dụng BĐT AM-GM cho 3 số dương ta được

\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)

Cộng từng vế  BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra <=> a=b=c=1

28 tháng 3 2020

có bấm nhầm j ko vậy bạn