K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3

 a) Tam giác MNP có các đường cao MK, NI cắt nhau tại H nên H là trực tâm tam giác MNP => PH vuông góc MN hay PA vuông góc MN tại A.

 b) Xét 2 tam giác MIN và MAP, ta có:

 \(\widehat{MIN}=\widehat{MAP}=90^o\)\(\widehat{NMP}\) chung

 \(\Rightarrow\Delta MIN\sim\Delta MAP\left(g.g\right)\)

 c) Tương tự câu b), ta chứng minh được \(\Delta PIN\sim\Delta PKM\)

 \(\Rightarrow\dfrac{PI}{PK}=\dfrac{PN}{PM}\Rightarrow\dfrac{PI}{PN}=\dfrac{PK}{PM}\)

 Xét tam giác PIK và PNM, ta có:

 \(\dfrac{PI}{PN}=\dfrac{PK}{PM};\widehat{MPN}\) chung

 \(\Rightarrow\Delta PIK\sim\Delta PNM\left(c.g.c\right)\)

 \(\Rightarrow\widehat{PKI}=\widehat{PMN}\) 

 d) Xét tam giác MIH và MKP, ta có:

 \(\widehat{MIH}=\widehat{MKP}=90^o\)\(\widehat{KMP}\) chung

 \(\Rightarrow\Delta MIH\sim\Delta MKP\left(g.g\right)\)

 \(\Rightarrow\dfrac{MI}{MK}=\dfrac{MH}{MP}\)

 \(\Rightarrow MK.MH=MI.MP\)

 e) Từ c), suy ra \(PK.PN=PI.PM\)

 Do đó \(MH.MK+PK.PN\)

 \(=MI.MP+PI.PM\)

 \(=MP\left(MI+PI\right)\)

 \(=MP^2\), ta có đpcm.

 f) Từ câu d), ta có \(\widehat{PIK}=\widehat{PNM}\)

 Tương tự câu d), ta cũng chứng minh được \(\Delta MIA\sim\Delta MNP\)

 \(\Rightarrow\widehat{MIA}=\widehat{MNP}\)

 \(\Rightarrow90^o-\widehat{MIA}=90^o-\widehat{MNP}\)

 \(\Rightarrow\widehat{AIN}=\widehat{KIN}\)

 \(\Rightarrow\) IN là tia phân giác \(\widehat{AIK}\)

 g) Xét tam giác MBK và MKN, ta có:

 \(\widehat{MBK}=\widehat{MKN}=90^o\)\(\widehat{NMK}\) chung

 \(\Rightarrow\Delta MBK\sim\Delta MKN\left(g.g\right)\)

 \(\Rightarrow\dfrac{MB}{MK}=\dfrac{MK}{MN}\)

 \(\Rightarrow MK^2=MB.MN\)

 Tương tự, ta cũng có \(MK^2=MC.MP\)

 \(\Rightarrow MB.MN=MC.MP\left(=MK^2\right)\)

 \(\Rightarrow\dfrac{MN}{MC}=\dfrac{MP}{MB}\)

 Xét tam giác MNP và MCB, ta có:

 \(\dfrac{MN}{MC}=\dfrac{MP}{MB};\) \(\widehat{NMP}\) chung

 \(\Rightarrow\Delta MNP\sim\Delta MCB\left(c.g.c\right)\)

 \(\Rightarrow\widehat{MNP}=\widehat{MCB}\)

 Theo cmt, ta có \(\widehat{MIA}=\widehat{MNP}\)

 \(\Rightarrow\widehat{MIA}=\widehat{MCB}\)

 \(\Rightarrow\) IA//BC (2 góc đồng vị bằng nhau)

a: Xét ΔMNP có

NI,MK là các đường cao

NI cắt MK tại H

Do đó: H là trực tâm của ΔMNP

=>PH\(\perp\)MN tại A

b: Xét ΔMIN vuông tại I và ΔMAP vuông tại A có

\(\widehat{IMN}\) chung

Do đó: ΔMIN~ΔMAP

c: Xét ΔPKM vuông tại K và ΔPIN vuông tại I có

\(\widehat{KPM}\) chung

Do đó: ΔPKM~ΔPIN

=>\(\dfrac{PK}{PI}=\dfrac{PM}{PN}\)

=>\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)

Xét ΔPIK và ΔPNM có 

\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)

\(\widehat{IPK}\) chung

Do đó: ΔPIK~ΔPNM

=>\(\widehat{PKI}=\widehat{PMN}\)

d: Xét ΔMIH vuông tại H và ΔMKP vuông tại K có

\(\widehat{IMH}\) chung

Do đó: ΔMIH~ΔMKP

=>\(\dfrac{MI}{MK}=\dfrac{MH}{MP}\)

=>\(MI\cdot MP=MK\cdot MH\)

e: \(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)

=>\(PI\cdot PM=PN\cdot PK\)

\(MH\cdot MK+PK\cdot PN\)

\(=MI\cdot MP+IP\cdot MP\)

=MP(MI+IP)

=MP^2

Đổi : 1,5m=15dm   0,8m=8dm   100cm=10dm

Thể tích hình hộp chữ nhật là :

15x8x10=1200(dm3)

Đổi:1200dm3=1200 l nước

Cần số gánh để đổ đầy bình nước là :

1200:30=40(gánh)

    Đ/S :40 gánh nước

SC=SĐ+(SSH-1)xd

SĐ=SC-(SSH-1)xd

10 tháng 3

Thời gian mặt trăng quay một vòng xung quanh trái đất là:

327 ngày 12 giờ : 12 = 27 ngày 16 giờ

Đáp số : 27 ngày 16 giờ

a: ta có: \(AE=EB=\dfrac{AB}{2}\)

\(AD=DC=\dfrac{AC}{2}\)

mà AB=AC

nên AE=EB=AD=DC

Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔEBC=ΔDCB

=>BD=CE

b: Ta có: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

c: Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại G

Do đó: G là trọng tâm của ΔABC

=>\(BG=\dfrac{2}{3}BD;CG=\dfrac{2}{3}CE\)

Vì \(BG=\dfrac{2}{3}BD\)

nên \(DG=\dfrac{1}{2}BG\)

Vì \(CG=\dfrac{2}{3}CE\)

nên \(EG=\dfrac{1}{2}CG\)

Xét ΔGBC có GB+GC>BC

=>\(2\left(EG+GD\right)>BC\)

=>\(GE+GD>\dfrac{BC}{2}\)

10 tháng 3

diện tích trồng bưởi và cam : 90x45=4550[\(m^2\)]

diện tích trồng bưởi : [4550 + 700] :2 = 2625[\(m^2\)]

diện tích trồng cam : 2625-700=1925[\(m^2\)]

D
datcoder
CTVVIP
10 tháng 3

\(\dfrac{3x+5}{6}=\dfrac{2x+7}{8}\\ \Rightarrow8.\left(3x+5\right)=6.\left(2x+7\right)\\ \Rightarrow24x+40=12x+42\\ \Rightarrow12x=2\\ \Rightarrow x=\dfrac{1}{6}\)

Vậy x = \(\dfrac{1}{6}\)

10 tháng 3

Hình như là 108 tui mới tính sơ qua th nha

10 tháng 3

diện tích : 36x10=360[\(m^2\)]

Số ki-lô-gam đỗ tương : 360:10x30=1080[ki-lô-gam]

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48:10=4,8(cm)

b: Xét ΔHAB  vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

c: Đề sai rồi bạn

 

10 tháng 3

chiều rộng mảnh đất hình chữ nhật là:

\(24\cdot\dfrac{3}{5}=14,4\left(m\right)\)

diện tích sân là:

\(24\cdot14,4=345,6\left(m^2\right)\)

diện tích sân chơi chiếm là:

\(100\%-40\%-35\%=25\%\)

diện tích sân chơi là:

\(345,6\cdot25\%=86,4\left(m^2\right)\)