Trong không gian \(Oxyz\), cho điểm \(I\left(-2,1,3\right)\) và mặt phẳng \(\left(P\right):2x-y+2z-10=0\). Biết rằng \(\left(S\right)\) có tâm \(I\)và cắt \(\left(P\right)\) theo một đường tròn \(\left(C\right)\) có chu vi bằng \(14\pi\). Khi đó bán kính \(r\)của mặt cầu \(\left(S\right)\) bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x>0,x\ne1\).
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
\(x-\sqrt{x}+1=x-\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu \(=\)khi \(x=\frac{1}{4}\).
\(Q=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Qx-Q\sqrt{x}+Q=2\sqrt{x}\)
\(\Leftrightarrow Qx-\sqrt{x}\left(Q+2\right)+Q=0\)
Với \(Q=0\Rightarrow x=0\)không thỏa mãn.
Với \(Q\ne0\):
Đặt \(\sqrt{x}=t>0\).
\(Qt^2-t\left(Q+2\right)+Q=0\)
\(\Delta=\left(Q+2\right)^2-4Q^2=-3Q^2+4Q+4\)
Phương trình có nghiệm suy ra \(-3Q^2+4Q+4\ge0\Leftrightarrow-\frac{2}{3}\le Q\le2\)
mà \(Q\inℤ\)\(\Rightarrow Q\in\left\{0,1,2\right\}\).
Với từng giá trị \(Q\)ta thế trực tiếp tìm giá trị của \(x\).
a;b bạn tự làm nhé, hđt số 3 là ra
c, \(\sqrt{7-2\sqrt{10}}-\sqrt{5-2\sqrt{6}}-\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{5}+\sqrt{3}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{3}+\sqrt{2}-\sqrt{5}+\sqrt{3}=0\)
\(d\left(I,\left(P\right)\right)=\frac{\left|-2.2-1.1+2.3-10\right|}{\sqrt{2^2+1^2+2^2}}=3\)
Bán kính đường tròn \(\left(C\right)\)là: \(\frac{14\pi}{2\pi}=7\)
Bán kính \(r\)của mặt cầu \(\left(S\right)\)là: \(\sqrt{3^2+7^2}=\sqrt{58}\).
\(\sqrt{58}nha\)