Xin quý Thầy Cô cùng các anh chị giúp con giải thêm bài toán này với ạ. Con xin cảm ơn thật nhiều. Trân Trọng! - M. Phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
-> CH = BC - BH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm
b, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\frac{AH^2}{CH}=25\)cm
-> BC = BH + CH = \(25+144=169\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC=25.169=4225\Rightarrow AB=65\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=24336\Rightarrow AC=156\)cm
\(a,x-\sqrt{x-4\sqrt{x}+4}=8\)
\(x-\sqrt{\left(\sqrt{x}-2\right)^2}=8\)
\(x-\left|\sqrt{x}-2\right|=8\)
\(TH1:0\le x\le2\)
\(x-2+\sqrt{x}=8\)
\(x+\sqrt{x}-10=0\)
\(\sqrt{\Delta}=1-\left(4.-10\right)=\sqrt{41}\)
\(\orbr{\begin{cases}x_1=\frac{\sqrt{41}-1}{2}\left(KTM\right)\\x_2=\frac{-\sqrt{41}-1}{2}\left(KTM\right)\end{cases}}\)
\(TH2:x>2\)
\(x-\sqrt{x}+2=8\)
\(x-\sqrt{x}-6=0\)
\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)
\(\orbr{\begin{cases}\sqrt{x}+2=0\\\sqrt{x}-3=0\end{cases}\orbr{\begin{cases}\sqrt{x}=-2\left(KTM\right)\\x=9\left(TM\right)\end{cases}}}\)
\(b,\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
\(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\sqrt{5}^2-2\sqrt{5}+1}=0\)
\(\left|\frac{1}{2}x+1\right|-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\left|\frac{1}{2}x+1\right|-\sqrt{5}+1=0\)
\(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)
\(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}\orbr{\begin{cases}\frac{1}{2}x=\sqrt{5}-2\\\frac{1}{2}x=-\sqrt{5}\end{cases}\orbr{\begin{cases}x=2\sqrt{5}-4\\x=-2\sqrt{5}\end{cases}}}}\)
\(c,\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)
\(\sqrt{2x-5}=0\)
\(x=\frac{5}{2}\left(TM\right)\)
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=9+16=25\Rightarrow BC=5\)cm
*Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
-> CH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm
b, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH=9.16=144\Rightarrow AH=12\)cm
-> CH + BH = BC = 16 + 9 = 25
* Áp dụng hệ thức : \(AB^2=BH.BC=9.25=225\Rightarrow AB=15\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=400\Rightarrow AC=20\)cm
Đặt \(\overline{ab}=x;\overline{cd}=y\Rightarrow\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100x+y\left(10\le x\le99;y\ge0\right)\)
\(\Rightarrow100x+y=\left(x+y\right)^2\)
\(=x^2+2xy+y^2\left(1\right)\)
\(\Rightarrow x^2+\left(2y-100\right)x+\left(y^2-y\right)=0\left(2\right)\)
Để \(x,y\inℤ\)thoản mãn (1) \(\Rightarrow\left(2\right)\)có nghiệm nguyên
\(\Rightarrow\Delta'=\left(y-50\right)^2-\left(y^2-y\right)\)
\(=y^2-100y+2500-y^2+y\)
\(=-99y+2500\)
\(\Rightarrow\Delta'\ge0\Leftrightarrow2500-99y\ge0\)
\(\Rightarrow y\le25\)
(1) có nghiệm nguyên khi \(\sqrt{\Delta'}\)là số nguyên
\(\Rightarrow y\in\left\{0;1;25\right\}\)
\(\cdot y=0\Rightarrow\sqrt{\Delta'}=50\Rightarrow\orbr{\begin{cases}x_1=\left(50-y\right)+\sqrt{\Delta'}=50+50=100\\x_2=\left(50-y\right)-\sqrt{\Delta'}=50-50=0\end{cases}\left(loại\right)}\)
tính tương tự với y=1 ; y =25 nha cậu
Ta có:
\(A=\left(1+tan^2x\right)cos^2x-\left(1+cot^2x\right)\left(cos^2x-1\right)\)
\(=\frac{1}{cos^2x}.cos^2x-\frac{1}{sin^2x}.sin^2x\)
\(=1-1=0\)
\(B=tan72^o-cot18^o+sin^230^o+sin^260^o\)
\(=tan72^o-tan72^o+sin^230^o+cos^230^o\)
\(=1\)
e, Đặt \(A=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2\sqrt{9-5}+3+\sqrt{5}=6+2.2=10\)
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
\(A=\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{6+2\sqrt{5}}}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{6-2\sqrt{5}}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{5}+1}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{5}-1}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{3\sqrt{5}+1}-\frac{3\sqrt{2}-\sqrt{10}}{3\sqrt{5}-1}\)
\(A=\frac{\left(3\sqrt{2}+\sqrt{10}\right)\left(3\sqrt{5}-1\right)-\left(3\sqrt{2}-\sqrt{10}\right)\left(3\sqrt{5}+1\right)}{\left(3\sqrt{5}\right)^2-1}\)
\(A=\frac{90+3\sqrt{50}-3\sqrt{2}-\sqrt{10}-90+3\sqrt{50}-3\sqrt{2}+\sqrt{10}}{44}\)
\(A=\frac{6\sqrt{50}-6\sqrt{2}}{44}=\frac{\sqrt{2}\left(6\sqrt{25}-6\right)}{44}=\frac{24\sqrt{2}}{44}=\frac{6\sqrt{2}}{11}\)
con cảm ơn nhiều ạ.