Hiện nay tuổi mẹ bằng bốn lần tuổi con cộng thêm 2. Sau 4 năm nữa, tuổi mẹ bằng năm lần tuổi con trừ đi 23.
Hỏi hiện nay tuổi mẹ và tuổi con là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a,b,c là độ dài 3 cạnh BC, AC,AB và r bán kính đường nội tiếp tam giác ABC
Vẽ BH _|_ IA, CK _|_ IA (H;K \(\in\)IA) . AI cắt BC tại M
Ta có: r.c=IA.BH(=2SIAB); r.b=IA.CK(=2SIAC)
BH+CK < BM+MC =BC=a
Do đó rc+rb < IA.a => IA > \(\frac{r\left(b+c\right)}{a}\)
Tương tự ta có: IB > \(\frac{r\left(a+c\right)}{a};IC\ge\frac{r\left(a+b\right)}{c}\)
IA+IB+IC > \(r\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)\ge6\cdot r;S=pr\Rightarrow r=\frac{S}{p}\)
Dấu "=" xảy rakhi a=b=c => Tam giác ABC đều
Gọi E là giao của AC và PB, F là giao của AB và PC
Qua P kẻ đường thẳng d song song với BC
Giả sử E và F lần luợt là giao của AC và AB với d
Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'
Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)
Gọi I là giao của HQ và AB; K là giao của HR và AC
Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)
\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với tam giác AHE
=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp
Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)
Từ (1) (2) => A là trực tâm tam giác PQR
Gọi G' là giao của IJ và AA1
Xét \(\Delta\)ABC có B1;C1 lần lượt là trung điểm của cạnh AC và AB
=> B1C1 =\(\frac{BC}{2}\). Tương tự: A1B1=\(\frac{AB}{2}\); C1A1=\(\frac{CA}{2}\)
Xét \(\Delta\)A1B1C1 và \(\Delta\)ABC có: \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{C_1A_1}{CA}\left(=\frac{1}{2}\right)\)
Do đó tam giác A1B1C1 đồng dạng với tam giác ABC (c.c.c)
=> \(\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C}=\widehat{ABC}\)
mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2}\)
Do đó: \(\Delta JA_1B_1\) đồng dạng với tam giác IAB (g.g)
=> \(\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)
Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\left(slt;AB//A_1B_1\right)\). Nên \(\widehat{IAA_1}=\widehat{IA_1A}\Rightarrow AI//A_1J\)
Xét tam giác G'AI có: A1J // AI => \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\) (hệ quả của định lý Talet)
=> \(AG'=\frac{2}{3}AA_1\)
Tam giác ABC có AA1 là đường trung tuyến, G' thuộc đoạn thẳng AA1 và AG' \(=\frac{2}{3}AA_1\)
Do đó G' là trọng tâm tam giác ABC, G' thuộc đoạn thẳng AA1 và AG'=\(\frac{2}{3}AA_1\)
Trả lời:
P/s: Đề khó quá!~Chỉ làm đc 2 câu dễ!!! :D
a) Ta có ˆBEC=ˆBFC=900⇒BEC^=BFC^=900⇒ 2 điểm E, F cùng nhìn BC dưới 1 góc 900 nên 2 điểm E, F cùng thuộc đường tròn đường kính BC \(\Rightarrow\) BCEF là tứ giác nội tiếp đường tròn đường kính BC tâm M.
g) Ta có: ˆACB=ˆBAxACB^=BAx^(1) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AB).
Tứ giác BCEF là tứ giác nội tiếp (cmt) ⇒ˆACB+ˆEFB=1800⇒(Tổng 2 góc đối của tứ giác nội tiếp). Mà ˆEFB+ˆAFE=1800 (2 góc kề bù) ⇒ˆACB=ˆAFE=AFE^ (2).
Từ (1) và (2) ⇒ˆBAx=ˆAFE. Mà 2 góc này ở vị trí so le trong \(\Rightarrow\)Ax//EF
Mà OA⊥Ax (Do Ax là tiếp tuyến của đường tròn tại A).
Vậy OA⊥ EF.
~Học tốt!~
Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)
\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)
\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)
Dấu "=" xảy ra khi S1 =S2=S3 <=> M là trọng tâm \(\Delta ABC\)
Gọi tuổi con là x, tuổi mẹ là y ( x,y khác 0 )
Theo đề ta có: x=4y+3
Tuổi mẹ sau 7 năm là:x+7
Tuổi mẹ sau 7 năm là:y+7
Theo giả thiết ta có: x+7=3(y+7)-3
Theo đề ta có hệ phương trình:
{x=4y+3x+7=3(y+7)−3{x=4y+3x+7=3(y+7)−3<=>{x−4y=3x−3y=11{x−4y=3x−3y=11
Giải hệ phương trình ta được: x=35 y=8
Vậy tuổi của mẹ là 35 , tuổi của con là 8