K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 7

Lời giải:

Gọi độ dài hai cạnh góc vuông là $a$ và $b$ (cm). 

Độ dài cạnh huyền: $\sqrt{a^2+b^2}$ (theo định lý Pitago) 

Diện tích: $ab:2=150$

$\Rightarrow ab=300$

Chu vi htg: $a+b+\sqrt{a^2+b^2}=60$

$\Leftrightarrow \sqrt{a^2+b^2}=60-(a+b)$

$\Rightarrow a^2+b^2=[60-(a+b)]^2=3600+a^2+b^2+2ab-120(a+b)$

$\Leftrightarrow 3600+2ab-120(a+b)=0$

$\Leftrightarrow 3600+2.300-120(a+b)=0$

$\Leftrightarrow a+b=35$ (cm) 

$\Leftrightarrow a=35-b$. Thay vào điều kiện $ab=300$ thì:

$b(35-b)=300$

$\Leftrightarrow 35b-b^2=300$

$\Leftrightarrow b^2-35b+300=0$

$\Leftrightarrow (b-20)(b-15)=0$

$\Leftrightarrow b=20$ hoặc $b=15$
Nếu $b=20$ thì $a=15$. Cạnh huyền $\sqrt{20^2+15^2}=25$ (cm) 

Nếu $b=15$ thì $a=20$. Cạnh huyền $\sqrt{20^2+15^2}=25$ (cm)

10 tháng 1 2015

                                                                    giải                                                                                                                                                                                      a, DA=DE(2 cạnh tương ứng)                                                                                                                                                                     DB=AE(2 cạnh tương ứng)                                                                                                                                                                      Mà DE=DB+CE                                                                                                                                                                                        =>DE=DB=CE(điều phải chứng minh)

 

10 tháng 4 2016

Bạn có kết quả bài này chưa giải giúp mk với

1 tháng 4 2018

bài lớp mấy

10 tháng 1 2015

bai nay bang 90 do

 

19 tháng 1 2017

góc ABC bằng 90 độ