Cho đoạn thẳng AB = 26 cm, C là một điểm bất kì trên đoạn AB, Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều ACD và BCE. Khi đó, độ dài nhỏ nhất của DE là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$6x+y=5$
$\Rightarrow y=5-6x$
Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$
Nếu $x<-1$ thì:
$A=-x-1+3-6x=2-7x> 2-7(-1)=9$
Nếu $\frac{1}{2}\geq x\geq -1$ thì:
$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$
Nếu $x> \frac{1}{2}$ thì:
$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$
Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$
kẻ đường cao BH của tam giác ABC thì BH cũng là đường cao của tam giác BCN
ta có diện tích tam giác ABC = 1/2 x BH x AC = 1/2 x BH x 10 = 24 => BH = 24/5 (cm)
=> Vậy diện tích tam giác BCN là : 1/2 x BH x CN = 1/2 x 24/5 x 2 = 24/5 (cm2)
- Mặt khác ta lại có diện tích tam giác ABN = diện tích tam giác ABC + diện tích tam giác BCN = 24 + 24/5 = 144/5 (cm2)
- kẻ đường cao NK của tam giác ABN thì NK cũng chính là đường cao của tam giác BNM
Diện tích của tam giác ABN là : 1/2 x NK x AB = 1/2 x NK x 16 = 144/5m => NK = 144/40 (cm)
Diện tích tam giác BNM là : 1/2 x NK x BM = 1/2 x 144/40 x 2 = 144/40 (cm2)
- Diện tích tứ giác BMNC = diện tích tam giác BCN + diện tích tam giác BMN = 24/5 + 144/40 = 336/40 = 8,4 (cm2)
Đáp số: 8,4 cm2
Xét tam giác ABE và tam giác ACD :
có :+ AB = AC ( theo GT )
+ \(\widehat{A}\)là góc chung
+ AD = AE (theo GT )
=> tam giác ABE = tam giác ACD ( cgc)
b) ta có ; tam giác ADE -= tam giác ACD => BE = CD ( VÌ 2 CẠNH TƯƠNG ỨNG )
c) TA có : tam giác ABE = tam giác ACD => \(\widehat{B}\)= \(\widehat{C}\)( VÌ 2 GÓC TƯƠNG ỨNG )
=> Tam giác KBC ( cân đỉnh K )
A,B,C là 3 góc của 1 tam giác?
Nếu đúng -> A+B+C = 180 (1)
Theo đề bài, ta có:
A = B + 18 (2)
C = B - 18 (3)
Thay (2), (3) vào (1), ta có: A + B + C = B + 18 + B + B - 18 = 3xB = 180
-> B = 60, A = 78, C = 42
Còn A,B,C hok phải 3 góc của tam giác thì pó tay :D