K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2021

đây là đáp anscuar mình

22 tháng 6 2015

ABCNMHKIDE

a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)

mà có MB = MC (do M là TĐ của BC)

=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)

=> BI = CK ( 2 canh t.ư)

+) tam giác BCK = CBI ( vì:  BC chung; góc BCK = góc CBI; CK = BI)

=> BK = CI (2 cạnh t.ư)

và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI

b) Gọi E là trung điểm của MC 

xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2

Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2

Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC 

vậy KN < MC

c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK 

    +)  Nếu AI = IM  mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM 

mặt khác, BI vuông góc với AM 

=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B

=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)

=> tam giác BAM đều => góc BAM = 60o

    +) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK 

=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)

=> IA = KD 

=> nếu AI = IM => AI = IM = MK = KD

vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o

d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB  do đối đỉnh; MC = MB)

=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC

lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD

+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm

23 tháng 2 2015

 Bài 2: gọi b là chiều dài a là chiều rộng c là đường chéo áp dụng định lý py-ta-go có a^2+b^2=c^2 thay vào ta có a^2+b^2=169 mà hai cạnh tỷ lệ với 3 và 4 nên a.3/4=b =>(a.3/4)^2+a^2=169 bạn tự làm tiếp nhé

AH
Akai Haruma
Giáo viên
26 tháng 8

Lời giải:

Để $A(-2;-6)$ đi qua đths đã cho thì:

$y_A=(5-m)x_A$

$\Leftrightarrow -6=(5-m)(-2)$
$\Leftrightarrow 3=5-m$

$\Leftrightarrow m=2$

AH
Akai Haruma
Giáo viên
26 tháng 8

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2z}{10}$

$=\frac{x+y-2z}{2+3-10}=\frac{10}{-5}=-2$

$\Rightarrow x=2(-2)=-4; y=3(-2)=-6; z=5(-2)=-10$

Gọi chiều dài quãng đường dự tính tổ 1, 2, 3 phải làm lúc ban đầu là x, y, z ( m)' và lúc chia lại theo thứ tự đó là x' , y', z'. Theo giả thiết thì : 
{ x/5 = y/6 = z/7 
{ x'/4 = y'/5 = z'/6 
Theo t/c tỷ lệ thức: 
{ x/5 = y/6 = z/7 = (x + y + z)/18 (1) 
{ x'/4 = y'/5 = z'/6 = (x' + y' + z')/15 (2) 
Rõ ràng x + y + z = x' + y' + z' = tổng chiều dài quãng đường phải làm nên từ (1) và (2) => 
{ x'/x = 24/25 < 1 => x' < x 
{ y'/y = 1 => y' = y 
{ z'/z = 36/35 > 1 => z' > z 
Theo giả thiết sau khi chia lại có 1 tổ phải làm nhiều hơn 10m so với lúc đầu => chỉ có tổ 3 thỏa mãn => z' = z + 10 => (z + 10)/z = 36/35 
<=> 35z + 350 = 36z => z = 350 (m) thay vào (1) 
x/5 = z/7 = 350/7 = 50 => x = 250 (m) 
y/6 = z/7 = 350/7 = 50 => y = 300 (m)