cho (o) từ 1 điểm A nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến AB và AC với đường tròn. Kẻ dây CD song song AB. Nối AD cắt đường tròn (o) tại E. 1. Chứng minh tam giác BOC nội tiếp, 2 Chứng tỏ AB2= AE*AD. 3 Chứng minh góc AOC = GÓC ACB và tam giác BDC cân. 4. CE kéo dài cắt AB ở I. Chứng minh IA=IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của xe khởi hành tại A là x(km/h) thì vận tốc của xe khởi hành tại B là x−5(km/h)
Vậy quãng đường xe đi từ A và xe đi từ B đi đc lần lượt là \(\frac{6}{5}x\left(km\right)\) và \(\frac{6}{5}\left(x-5\right)\left(km\right)\)
Mà tổng quãng đường đi đc là AB nên ta có :
\(\frac{6}{5}x+\frac{6}{5}\left(x-5\right)=120\)
\(\Leftrightarrow x+x-5=100\)
\(\Leftrightarrow2x=105\)
\(\Leftrightarrow x=50,5\)
Vậy vận tốc xe khởi hành tại A là 50,5(km/h), vận tốc xe khởi hành tại B là 45,5(km/h)
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)