P/S: Ready?
Với a,b,c dương, chứng minh \(\text{∑}_{cyc}\frac{a^2+b^2}{a+b}\le\frac{3\left(\text{∑}_{cyc}a^2\right)}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chi phí rào quanh sân là
260 000×72 =18 720 000 (đ)
Vậy chi phí là 18 720 000 đ
Chịu khó ghi ra đề luôn ak em,ghi sigma thế nhiều người khó hiểu :((
Đề là như thế này:Cho a,b,c là các số dương,chứng minh rằng:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{\left[\left(a+b\right)+c\right]\left(a^2+b^2\right)}{a+b}+\frac{\left[\left(b+c\right)+a\right]\left(b^2+c^2\right)}{b+c}+\frac{\left[\left(c+a\right)+b\right]\left(c^2+a^2\right)}{c+a}\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{c\left(a^2+b^2\right)}{a+b}+\frac{a\left(b^2+c^2\right)}{b+c}+\frac{b\left(a^2+c^2\right)}{a+c}\le a^2+b^2+c^2\)
\(\Leftrightarrow c^2-\frac{c\left(a^2+b^2\right)}{a+b}+a^2-\frac{a\left(b^2+c^2\right)}{b+c}+b^2-\frac{b\left(a^2+c^2\right)}{a+c}\ge0\)
\(\Leftrightarrow\frac{ac\left(c-a\right)^2}{\left(a+b\right)\left(b+c\right)}+\frac{bc\left(b-c\right)^2}{\left(a+b\right)\left(a+c\right)}+\frac{ca\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}\ge0\) ( đúng )
Chuyên Nguyễn Bình Khiêm Quảng Nam 2018