Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ME là tia phân giác của góc AMC nên:
\(\dfrac{AM}{AE}=\dfrac{MC}{CE}\Rightarrow\dfrac{AM}{MC}=\dfrac{AE}{CE}\) (1)
MD là tia phân giác của góc AMB nên:
\(\dfrac{AM}{AD}=\dfrac{BM}{BD}\Rightarrow\dfrac{AM}{BM}=\dfrac{AM}{CM}=\dfrac{AD}{BD}\) (vì M là trung điểm của BC nên BM = CM) (2)
Từ (1) và (2) ta có: \(\dfrac{AE}{CE}=\dfrac{AD}{BD}\Rightarrow DE//BC\)
b) Ta có: \(\Delta ADE\sim\Delta ABC\left(g.g\right)\) (vì có DE//BC)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AE}{AC}\) (3)
\(\Delta AIE\sim\Delta AMC\left(g.g\right)\) (vì có IE//MC)
\(\Rightarrow\dfrac{IE}{MC}=\dfrac{AE}{AC}\) (4)
Từ (3) và (4) ta có: \(\dfrac{DE}{BC}=\dfrac{IE}{MC}\Rightarrow\dfrac{DE}{IE}=\dfrac{BC}{MC}=2\)
\(\Rightarrow DE=2IE\)
Hay I là trung điểm của DE
a) Vào năm 2000 diện tích đất nông nghiệp ở nước ta là:
Thay t = 0 vào \(S=0,12t+8,97\) (vì t được tính theo số năm kể từ năm 2000) ta có:
\(S=0,12\cdot0+8,97=8,97\left(tr.ha\right)\)
b) Diện tích đất nông nghiệp ở nước ra đạt 10,05 triệu hec-ta ta thay \(S=10,05\) ta có:
\(10,05=0,12t+8,97\)
\(\Leftrightarrow0,12t=10,05-8,97\)
\(\Leftrightarrow0,12t=1,08\)
\(\Leftrightarrow t=1,08:0,12\)
\(\Leftrightarrow t=9\)
Vậy năm nước ta đạt 10,05 triệu héc-ta là: \(2000+9=2009\)
\(y=\left(m-3\right)+m^2\) có: \(\left\{{}\begin{matrix}a=m-3\\b=m^2\end{matrix}\right.\)
a) Để \(y=\left(m-3\right)x+m^2\) cắt \(y=3x+5\) thì:
\(a\ne a'\) hay:
\(m-3\ne3\)
\(\Leftrightarrow m\ne3+3\)
\(\Leftrightarrow m\ne6\)
b) Để \(y=\left(m-3\right)x+m^2\) song song với \(y=-2x+1\) thì
\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) hay:
\(\left\{{}\begin{matrix}m-3=-2\\m^2\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-2+3\\m\ne\pm1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm1\end{matrix}\right.\) (ktm)
Vậy không có m thỏa mãn
c) Để \(y=\left(m-3\right)x+m^2\) trùng với \(y=-x+4\) thì
\(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\) hay:
\(\left\{{}\begin{matrix}m-3=-1\\m^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-1+3\\m=\pm2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\Leftrightarrow m=2\)
a) Đường thẳng \(y=ax+b\) song song với đường thẳng \(y=4x-3\)
Nên có \(a=4\) đường thẳng có dạng \(y=3x+b\left(b\ne-3\right)\)
Mà \(y=3x+b\) đi qua điểm \(I\left(\dfrac{1}{2};\dfrac{3}{4}\right)\) nên ta thay \(x=\dfrac{1}{2};y=\dfrac{3}{4}\) ta có:
\(\dfrac{3}{4}=3\cdot\dfrac{1}{2}+b\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{3}{2}+b\)
\(\Leftrightarrow b=\dfrac{3}{4}-\dfrac{3}{2}\)
\(\Leftrightarrow b=-\dfrac{3}{4}\left(tm\right)\)
Vậy: \(y=4x-\dfrac{3}{4}\)
b) Đường thẳng \(y=ax+b\) có hệ số góc \(a=3\) nên có dạng \(y=3x+b\)
Do đường thẳng cắt trục tung tại điểm có tung độ là - 4 nên ta thay \(x=0;y=-4\)
\(-4=0\cdot3+b\)
\(\Leftrightarrow b=-4\)
Vậy: \(y=3x-4\)
a)
b) Phương trình hoành độ giao điểm của hai đường thẳng là:
\(x-1=2x\)
\(\Leftrightarrow2x-x=-1\)
\(\Leftrightarrow x=-1\)
Thay x = - 1 vào y = 2x ta có: \(y=2\cdot-1=-2\)
Vậy tọa độ giao điểm của 2 đường thẳng là \(\left(-1;-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1-x\right)=\left(x+1\right)^3-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-x\right]=\left(x+1\right)^3-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^3-x\left(x+1\right)=\left(x+1\right)^3-\left(x+1\right)\)
\(\Leftrightarrow x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(A-B=35^2+33^2+31^2+....+3^2+1^2-\left(34^2+32^2+30^2+....+4^2+2^2\right)\\ =\left(35^2-34^2\right)+\left(33^2-32^2\right)+\left(31^2-30^2\right)+...+\left(3^2-2^2\right)+1^2\\ =\left(35-34\right)\left(35+34\right)+\left(33-32\right)\left(33+32\right)+\left(31-30\right)\left(31+30\right)+....+\left(3-2\right)\left(3+2\right)+1\\ =1.\left(35+34\right)+1.\left(33+32\right)+1.\left(31+30\right)+....+1.\left(3+2\right)+1\\ =1+2+3+....+30+31+32+33+34+35\\ =\dfrac{\left(1+35\right).35}{2}=630\)
a) Ta có:
\(DF//AC\left(gt\right)\) (1)
\(DE//AB\left(gt\right)\) (2)
Từ (1) và (2) ⇒ AEDF là hình bình hành (3)
Mà AD là phân giác của góc FAE (4)
Từ (3) và (4) ⇒ AEDF là hình thoi
b) Xét hai tam giác CDE và CBA có:
\(\widehat{ACB}\) chung
\(\widehat{CED}=\widehat{CAB}\) (đồng vị vì DE//AB)
\(\Rightarrow\Delta CDE\sim\Delta CBA\left(g.g\right)\)
\(\Rightarrow\dfrac{DE}{AB}=\dfrac{CE}{AC}\Rightarrow DE\cdot AC=CE\cdot AB\)
Do: AEDF là hình thoi nên: DE = AE = AF
\(\Rightarrow AF\cdot AC=\left(AC-AE\right)\cdot AB\)
\(\Rightarrow\left(AB-BF\right)\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow AB\cdot AC-BF\cdot AC=AC\cdot AB-AE\cdot AB\)
\(\Rightarrow BF\cdot AC=AE\cdot AB\)
\(\Rightarrow AF\cdot AB=BF\cdot AC\left(đpcm\right)\)