Cho a và b là các số thực dương. Chọn r là nghiệm có giá trị tuyệt đối nhỏ nhất của phương trình : x3−ax+b=0x3−ax+b=0 . CMR : ba<r≤3b2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HSG toán 9 Quảng Nam năm 2018-2019
Giải: Từ đẳng thức đã cho suy ra: \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\). Áp dụng (a+b)2 >= 4ab ta có:
\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\left(\frac{2x+y}{2}\right)\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\). Dấu "=" xảy ra <=> x=y
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left("="\Leftrightarrow x=y=z\right)\)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le2\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)Do đó:
\(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTLN của A=3 đạt được khi x=y=z=1
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\)
\(\sqrt{x-1}-\sqrt{7x^2-3}=-x^2\)
\(-2\sqrt{\left(x-1\right)\left(7x^2-3\right)}=x^4-x+4-7x^2\)
\(4\left(x-1\right)\left(7x^2-3\right)=\left(x^4-x+4-7x^2\right)^2\)
\(28x^3-12x-28x^2+12=x^8-x^2+16-49x^4\)
\(28x^3-12x-28x^2+12-x^8+x^2-16+49x^4=0\)
\(28x^3-12x-27x^2-4-x^8+49x^4=0\)
\(-x^8+49x^4+28x^3-27x^2-12x-4=0\)
Đến đây e chịu vậy !