Thực hành 1 trang 7 Toán 8 Tập 1: Cho các biểu thức sau:
ab–πr2; 4πr33;p2π;x−1y;0;1√2;x3−x+1 ��–��2; 4��33; �2�; �−1�; 0; 12; �3−�+1
Trong các biểu thức trên, hãy chỉ ra:
a) Các đơn thức;
b) Các đa thức và số hạng tử của chúng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt đã cho \(\Leftrightarrow\dfrac{2x-50}{50}-1+\dfrac{2x-51}{49}-1+\dfrac{2x-52}{48}-1+\dfrac{2x-53}{47}-1+\dfrac{2x-200}{25}+4=0\)
\(\Leftrightarrow\dfrac{2x-50-50}{50}+\dfrac{2x-51-49}{49}+\dfrac{2x-52-48}{48}+\dfrac{2x-53-47}{47}+\dfrac{2x-200+100}{25}=0\)
\(\Leftrightarrow\dfrac{2x-100}{50}+\dfrac{2x-100}{49}+\dfrac{2x-100}{48}+\dfrac{2x-100}{47}+\dfrac{2x-100}{25}=0\)
\(\Leftrightarrow\left(2x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)
\(\Leftrightarrow2x-100=0\) (vì \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\))
\(\Leftrightarrow x=50\)
Vậy pt đã cho có tập nghiệm \(S=\left\{50\right\}\)
Do AB // DE (gt)
Theo hệ quả của định lý Thalès, ta có:
AB/DE = BC/CD
x = BC = AB.CD : DE
x = BC = 5.7,2 : 15 = 2,4
Do AB // DE (gt)
Theo hệ quả của định lý Thalès, ta có:
AB/DE = AC/CE
y = CE = AC.DE : AB
= 3.15 : 7,2
= 6,25
=> (x+1) . 5 = (2x + 5) . 3
5x + 5 = 6x + 15
5x + 6x = 15-5
11x =10
x = 11\10
câu a
\(\left(\dfrac{2x}{3x+1}-1\right):\left(1-\dfrac{8x^2}{9x^2-1}\right)\\ =\left(\dfrac{2x}{3x+1}-\dfrac{3x+1}{3x+1}\right):\left(\dfrac{9x^2-1}{9x^2-1}-\dfrac{8x^2}{9x^2-1}\right)\\ =\left(\dfrac{2x}{3x+1}-\dfrac{3x+1}{3x+1}\right):\left(\dfrac{9x^2-1}{\left(3x-1\right)\left(3x+1\right)}-\dfrac{8x^2}{\left(3x-1\right)\left(3x+1\right)}\right)\\ =\left(\dfrac{2x-3x-1}{3x+1}\right):\left(\dfrac{9x^2-1-8x^2}{\left(3x-1\right)\left(3x+1\right)}\right)\)
\(=\left(\dfrac{-x-1}{3x+1}\right):\left(\dfrac{x^2-1}{\left(3x-1\right)\left(3x+1\right)}\right)\\ =\dfrac{-x-1}{3x+1}\cdot\dfrac{\left(3x-1\right)\left(3x+1\right)}{x^2-1}\)
\(=\dfrac{-\left(x+1\right)\cdot\left(3x-1\right)\cdot\left(3x+1\right)}{\left(3x+1\right)\cdot\left(x-1\right)\cdot\left(x+1\right)}\\ =\dfrac{-3x+1}{x-1}\)
câu b
thay \(x=2\) vào P ta được
\(\dfrac{-3\cdot2+1}{2-1}=\dfrac{-6+1}{1}=-5\)
vậy \(P=5\) khi \(x=2\)
câu a)
\(\dfrac{2y-1}{y}-\dfrac{2x+1}{x}\\ =\dfrac{2xy-x}{xy}-\dfrac{2xy+y}{xy}\\ =\dfrac{2xy-x-2xy-y}{xy}\\ =\dfrac{-x-y}{xy}\)
câu b)
\(\dfrac{2x}{3}:\dfrac{5}{6x^2}\\ =\dfrac{2x}{3}\cdot\dfrac{6x^2}{5}\\ =\dfrac{2x\cdot6x^2}{3\cdot5}\\ =\dfrac{12x^3}{15}=\dfrac{4x^3}{5}\)
\(A=4x^2+16x-9=4\left(x^2+4x+4\right)-25=4\left(x+2\right)^2-25\ge-25\)
\(A_{min}=-25\) khi \(x=-2\)
\(B=-5x^2-29x-20=-5\left(x^2+\dfrac{29}{5}x+\dfrac{841}{100}\right)+\dfrac{441}{20}\)
\(B=-5\left(x+\dfrac{29}{10}\right)^2+\dfrac{441}{20}\le\dfrac{441}{20}\)
\(B_{max}=\dfrac{441}{20}\) khi \(x=-\dfrac{29}{10}\)
Lời giải:
a. Các đơn thức: $\frac{4\pi r^3}{3}; \frac{p}{2\pi}; 0; \frac{1}{\sqrt{2}}$
b. Đa thức:
$\frac{4\pi r^3}{3}$ có 1 hạng tử
$\frac{p}{2\pi}$ có 1 hạng tử
$0$ có 1 hạng tử
$\frac{1}{\sqrt{2}}$ có 1 hạng tử
$ab-\pi r^2$ có 2 hạng tử
$x^3-x+1$ có 3 hạng tử