A=10+15+20+25+x giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(x^3\) + 64
= \(x^3\) + 43
= (\(x+4\))(\(x^2\) - 4\(x\) + 16)
b; 2\(x^2\) - 4\(x\)
= 2\(x\)(\(x-2\))
c; 6\(x^2\)y + 4\(xy^2\) + 2\(xy\)
= 2\(xy\)(3\(x\) + 2y + 1)
a) x³ + 64
= x³ + 4³
= (x + 4)(x² − 4x + 16)
b) 2x² − 4x
= 2x(x - 2)
c) 6x²y + 4xy² + 2xy
= 2xy(3x + 2y + 1)
d) Sửa đề: x² − x + y − 2xy + y²
= x² − 2xy + y² − x + y
= (x − y)² − (x − y)
= (x − y)(x − y − 1)
5A:
b: \(47-\dfrac{\left(45\cdot24-5^2\cdot12\right)}{14}\)
\(=47-\dfrac{1080-25\cdot12}{14}\)
\(=47-\dfrac{1080-300}{14}=47-\dfrac{780}{14}=-\dfrac{61}{7}\)
d: \(2345-1000:\left[19-2\left(2\cdot1-18^2\right)\right]\)
\(=2345-1000:\left(19+2\cdot322\right)\)
\(=2345-\dfrac{1000}{19+644}=2345-\dfrac{1000}{663}=\dfrac{1553735}{663}\)
5B:
b: \(50-\left[\left(20-2^3\right)\right]:2+34\)
\(=84-\dfrac{20-8}{2}=84-6=78\)
c: \(20-\left[30-\left(5-1\right)^2\right]:3\)
\(=20-\dfrac{\left[30-4^2\right]}{3}\)
\(=20-\dfrac{14}{3}=\dfrac{46}{3}\)
d: \(205-\left[1200-\left(4^2-23\right)^3\right]:40\)
\(=205-\left[1200-\left(16-23\right)^3\right]:40\)
\(=205-\dfrac{\left[1200-\left(-7\right)^3\right]}{40}\)
\(=205-\dfrac{1200+343}{40}\)
\(=205-38,575=166,425\)
\(u_n=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{n}{2n+1}\)
Số hạng thứ \(2021\) là \(u_{2021}=\dfrac{2021}{2.2021+1}=\dfrac{2021}{4043}\)
68313 - (200 + 313)
= 68313 - 200 - 313
= (68313 - 313) - 200
= 68000 - 200
= 67800
A = 3 + 32 + 33 + ... + 32015
3A = 32 + 33 + 34 + ... + 32016
3A - A = 32 + 33 + 34 + ... + 32016
2A = 32 + 33 + 34 + ... + 32016 - (3 + 32 + 33 + ... + 32015)
2A = 32 + 33 + 34 + ... + 32016 - 3 - 32 - 33 - ... - 32015
2 A = 3 2016 - 3 + (32 - 32) + (33 - 33) + ... + (32015 - 32015)
2A = 32016 - 3 + 0 + 0 + ... + 0 + 0
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 - (3 - 3) = 34\(x\)
32016 = 34\(x\)
2016 = 4\(x\)
\(x\) = 2016 : 4
\(x=\) 504
Vậy \(x=504\)
\(\dfrac{49^5+49^7+49^9}{7^{11}+7^{13}+7^{15}+7^{17}+7^{19}+7^{21}}\)
\(=\dfrac{7^{10}+7^{14}+7^{18}}{7^{11}\left(1+7^2\right)+7^{15}\left(1+7^2\right)+7^{19}\left(1+7^2\right)}\)
\(=\dfrac{7^{10}\left(1+7^4+7^8\right)}{7^{11}\left(1+7^2\right)\left(1+7^4+7^8\right)}=\dfrac{1}{7\left(1+7^2\right)}=\dfrac{1}{7\cdot50}=\dfrac{1}{350}\)
A = 10 + 15 + 20 + 25 + \(x\)
A = (10 + 20) + (15 + 25) + \(x\)
A = 30 + 40 + \(x\)
A = 70 + \(x\)