K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Ta có: \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(x+\sqrt{x}-2=\left(x-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

=> \(P=\frac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

b) \(P=\sqrt{x}-1\)

<=> \(\frac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

<=> \(x-4\sqrt{x}-1=0\)

<=> \(\orbr{\begin{cases}\sqrt{x}=2+\sqrt{5}\\\sqrt{x}=2-\sqrt{5}< 0\left(loại\right)\end{cases}}\)

<=> \(x=9+4\sqrt{5}\)thỏa mãn

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Trước tiên chúng ta tính: 

\(1-x\sqrt{x}=1-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

\(1+x\sqrt{x}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

khi đó:

P = \(\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)^2\)

\(=\left(x-1\right)^2\)

b) \(P< 7-4\sqrt{3}=4-2.2.\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)

=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\sqrt{3}-2< x-1< 2-\sqrt{3}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

Đối chiếu điều kiện: \(\sqrt{3}-1< x< 3-\sqrt{3}\) và x khác 1.

Gọi chiều dài HCN là x (x>0,m)

Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)

Theo bài ra ta có phương trình sau 

\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)

\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)

Tự thực hiện tiếp ....