cho tam giac ABC can tai A duong cao AH biet AB=5cm,BC=6cm.
a)tinh do dai cac doan thang BH,AH
b)Goi Gla trong tam cua tam giac ABC . Chung minh rang ba diem A,G,H thang hang.
c)Chung minh hai goc ABG va ACG bang nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình ra nhé. Mà ^ kí hiệu là góc ha .
Trong tam giác OGC có góc GOC = 90độ trừ ^OCG
hay ^GOC = 90 độ - ^ACB /2 (1)
^BOD là góc ngoài tam giác AOB tại O => ^BOD = ^BAO+^ABO hay ^BOD= ^BAC/2+^ABC/2
=> ^BOD= (180độ - ^ACB) /2 = 90 độ - ^ ACB/2 (2)
Từ (1) và (2) ta có ^GOC=^BOD
Mà ^BOG+ ^GOD = ^BOD
^COD+^DOG =^COG
=> BOG = COD
A B C D E F G O
đÂY LÀ HÌNH Cho tam giác ABC. Vẽ ba đường phân giác AD; BE; CF cắt nhau tại O. Kẻ OG vuông góc BC tại G. Chứng minh rằng góc BOG = góc COD.Mình được gợi ý là dùng góc ngoài. Mình cần cách giải gấp trong một tuần. Giúp mình nhé
AC=2AB(**) => AB = 1/2. AC (*)
∆BAH~∆BCA
=> BH/BA=AH/BA
BH = AH.BA/AC
thế (*) vào
=> BH = [AH.1/2AC]/AC = 1/2 AH
=> AH = 2BH (***)
∆AHC~∆BAC
=>AH/BA=HC/AC
=>AH/AB=HC/AC
=>HC=(AH.AC)/AB thế (**) vào
=> HC=(AH.2AB)/AB
=>HC=2.AH thế (***) vào
=> HC= 2.2HB= 4HB
a. Vì tam giác ABC cân tại A nên đường cao cũng là đường trung tuyến
Do đó H là trung điểm của BC hay BH=HC=1/2BC=3cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H ta có AH2 + BH2 = AB2
suy ra AH2 + 32 = 52
=> AH = 4(cm)
b. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là đường trung tuyến của tam giác ABC
Do đó A, G, H thẳng hàng
c. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là phân giác góc A
suy ra góc BAG = góc CAG
Tam giác ABG và tam giác ACG có:
AB = AC
góc BAG = góc CAG
AG chung
Do đó tam giác ABG = tam giác ACG