Tìm x,y thỏa mãn
2xy - 3x +y =9
mọi người giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-49}{x-7}+x-2=x+7+x-2=2x+9\)
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right)\frac{x^2+6x}{2x-6}\)
\(=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right)\frac{x\left(x+6\right)}{2\left(x-3\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6\left(2x-6\right)}{x\left(x-6\right)}.\frac{x}{2\left(x-3\right)}\)
\(=\frac{12x}{2x\left(x-6\right)}=\frac{6}{x-6}\)
b, Ta có : \(\left|x+1\right|=3\)
TH1 : \(x+1=3\Leftrightarrow x=2\)
TH2 : \(x+1=-3\Leftrightarrow x=-4\)
Xét TH1 thay x = 2 ta có :
\(P=\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
Xét TH2 thay x = -4 ta có :
\(P=\frac{-4}{-4+2}=\frac{-4}{-2}=2\)
c, chưa học =))
\(P=\frac{x}{x+2}+\frac{2}{x-2}=\frac{2x+4}{4-x^2}\)
\(=\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}+\frac{2x+4}{\left(x-2\right)\left(x+2\right)}+\frac{2x+4}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\frac{x}{x+2}\)
Xét 2 trường hợp
TH1 :
\(x+10\ge0\)
\(x\ge-10\)
\(\left(x+1\right)^2+|x+10|-x^2-12=0\)
\(x^2+2x+1+x+10-x^2-12=0\)
\(3x-1=0\)
\(x=\frac{1}{3}\left(n\right)\)
TH2 :
\(x+10< 0\)
\(x< -10\)
\(\left(x+1\right)^2+|x+10|-x^2-12=0\)
\(x^2+2x+1-\left(x+10\right)-x^2-12=0\)
\(x^2+2x+1-x-10-x^2-12=0\)
\(x-21=0\)
\(x=21\left(l\right)\)
Vậy \(x=\frac{1}{3}\) là nghiệm của phương trình
(x + 1)2 + |x + 10| - x2 - 12 = 0
=> x2 + 2x + 1 + |x + 10| - x2 - 12 = 0
=> |x + 10| = -2x + 11
ĐKXĐ : -2x + 11 \(\ge0\Rightarrow x\le5\)
Khi đó |x + 10| = -2x + 11
<=> \(\orbr{\begin{cases}x+10=-2x+11\\x+10=2x-11\end{cases}}\Rightarrow\orbr{\begin{cases}3x=1\\x=21\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(\text{loại}\right)\\x=21\left(tm\right)\end{cases}}\Rightarrow x=21\)
Vậy x = 21 là giá trị cần tìm
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}+\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(=\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)+\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(=\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}+\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(=\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}+\frac{1}{91}+\frac{1}{90}+\frac{1}{89}\right)\)
Phương trình??
\(\left(x-1\right)^2+\left(x+3\right)^2=29\cdot\left(x-2\right)\cdot\left(x+1\right)+38\)
\(x^2-2x+1+x^2+6x+9=29\left(x^2-x-2\right)+38\)
\(2x^2+4x+10=29^2-29x-58+38\)
\(2x^2+4x+10=29x^2-29x-20\)
\(0=29x^2-2x^2-29x-4x-20-10\)
\(0=27x^2-33x-30\)
\(27x^2-33x-30=0\)
\(\orbr{\begin{cases}x=\frac{11+\sqrt{481}}{18}\\x=\frac{11-\sqrt{481}}{18}\end{cases}}\)