K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

=14\15.20\21....209\210

=14.2\15.2.20.2\21.2....209.2\210.2

=4.7\5.6.5.8\6.7.....19.20\20.21

=4.5.6....19\5.6.7...20.7.8.9....22\6.7.8.....21

=4\20.22\6

=1\5-11\3

=11\15

k cho mik nha

14 tháng 1 2020

Có chắc ko đó bạn

30 tháng 4 2016

c. 

tg BCK: CD là đường cao

                   là trung tuyến 

sra: tg BCK cân

sra: DBC= DKC(1)

  • xét tg EBC và DCB:

BEC=BDC(=90 độ)

ABC=ACB(tg ABC cân)

BC (cạnh chung)

sra: Tg EBC= DCB(cạnh huyền-góc nhọn)

sra: ECB= DBC(cặp góc tương ứng)(2)

Từ (1) và (2) 

sra: góc ECB=DKC(đfcm)

23 tháng 4 2016

P= (x+y) (x+2) (y+2)

  = 2(x+2) (y+2)

  = 2* (x+y) *2

  = 4* (-3)

   = -12

23 tháng 4 2016

P=(x+y).(x+2).(y+2)

 =2.xy+x2+2y+4

 =2.(-3)+2(x+y)+4

 =-6+2.2+4

 =2

Vậy P=2

Mk nghĩ têk nhg ko bt đúg hay sai nữa ^~^ :3 :p

25 tháng 4 2016

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

25 tháng 4 2016

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)

23 tháng 4 2016

Bất phương trình một ẩn là một mệnh đề chứa biến x so sánh hai hàm số f(x) và g(x) trên trường số thực dưới một trong các dạng

23 tháng 4 2016

Bất phương trình một ẩn là một mệnh đề chứa biến x so sánh hai hàm số f(x) và g(x) trên trường số thực dưới một trong các dạng

Giao của hai tập xác định của các hàm số f(x) và g(x) được gọi là tập xác định của bất phương trình.

Tuy nhiên các bất phương trình trên đều có thể chuyển về dạng tương đương f(x)> 0 (hoặc f(x) ≥ 0).

Cũng như trong phương trình, biến x trong bất phương trình cũng được gọi là ẩn, hàm ý là một đại lượng chưa biết.

Sau đây ta sẽ xét bất phương trình dạng tổng quát f(x)> 0.

Nếu với giá trị x =a, f(a) > 0 là bất đẳng thức đúng thì ta nói rằng a nghiệm đúng bất phương trình f(x) > 0, hay a là nghiệm của bất phương trình.

Tập hợp tất cả các nghiệm của bất phương trình được gọi là tập nghiệm hay lời giải của bất phương trình, đôi khi nó cũng được gọi là miền đúng của bất phương trình. Trong nhiều tài liệu người ta cũng gọi tập nghiệm của bất phương trình là nghiệm của bất phương trình.

3 tháng 9 2018

a, xét tam giác ADG và tam giác CDK có:

  \(\widehat{ADG}=\widehat{CDK}\)

  AD=CD(D là trung điểm của AC)

  \(\widehat{AGD}=\widehat{CKD}=90^o\)

\(\Rightarrow\)tam giác ADG = tam giác CDK(cạnh huyền - góc nhọn)

\(\Rightarrow\)DG=DK(2 cạnh tương ứng)

xét tam giác ADK và tam giác CDG có

  AD=CD(GT)

\(\widehat{ADK}=\widehat{CDG}\)(đđ)

DK=DG(chứng minh trên)

\(\Rightarrow\)tam giác ADK = tam giác CDG (c.g.c)

\(\Rightarrow\)AK=CG(2 cạnh tương ứng)