K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

\(\Rightarrow ab+bc+ca=3\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1

\(Q=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}+\frac{1}{1+x^2}\)

Ta có \(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)

Tương tự \(\frac{y}{1+z^2}\ge y-\frac{yz}{2}\)

                    \(\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)

Lại có \(\frac{1}{1+y^2}=\frac{y^2+1-y^2}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)

Tương tự \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)

\(\frac{1}{1+z^2}\ge1-\frac{z}{2}\)

Cộng từng vế các bđt trên ta được 

\(Q\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}+3-\frac{x+y+z}{2}\)\(=\frac{9}{2}-\frac{3}{2}=3\)

Dấu "=" xảy ra khi x=y=z=1

8 tháng 6 2020

a) Xét tam giác KDA và KCD có: 

góc AKD chung

góc KDA=KCD

suy ra hai tam giác đồng dạng

b) Xét (o) có tứ giác ABCD nội tiếp 

góc ACD=ABD

góc DAC=DBC

sau đó bạn xét tam giác ABD và tam giác DBC đồng dạng là xong

8 tháng 6 2020

Áp dụng BĐT AM-GM ta có: \(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)

Tương tự có: \(\hept{\begin{cases}\frac{b}{c^3+ca}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right)\\\frac{c}{a^3+ca}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\end{cases}}\)

Cộng 3 vế BĐT ta được:  \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

Bài toán quy về chứng minh \(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)\left(\frac{1}{b}+b\right)\left(\frac{1}{c}+c\right)\ge3+a+b+c=6\)

BĐT cuối hiển nhiên đúng vì theo BĐT AM-GM ta có:

\(\hept{\begin{cases}\frac{1}{a}+a\ge2\\\frac{1}{b}+b\ge2\\\frac{1}{c}+c\ge2\end{cases}}\)

Dấu "=" xảy ra <=> a=b=c=1

8 tháng 6 2020

\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\)

\(=\frac{a}{b\left(b^2+a\right)}+\frac{b}{c\left(c^2+b\right)}+\frac{c}{a\left(a^2+c\right)}\)

\(=\frac{1}{b}-\frac{b}{b^2+a}+\frac{1}{c}-\frac{c}{c^2+b}+\frac{1}{a}-\frac{a}{a^2+c}\)

\(\ge\frac{1}{b}-\frac{b}{2b\sqrt{a}}+\frac{1}{c}-\frac{c}{2c\sqrt{b}}+\frac{1}{a}-\frac{a}{2a\sqrt{c}}\)

\(=\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\frac{1}{4}\left(\frac{1}{b}-\frac{2}{\sqrt{b}}+1\right)+\frac{1}{4}\left(\frac{1}{c}-\frac{1}{\sqrt{c}}+1\right)\)\(-\frac{3}{4}\)

\(\ge\frac{3}{4}.\frac{9}{a+b+c}+\frac{1}{4}\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2-\frac{3}{4}\)

\(\ge\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1.