Bài 6: Rút gọn:
a) (y - 2)(y + 2)(y2 + 4) - (y + 3)(y - 3)(y2 + 9)
b) 2(x2 - xy + y2)(x - y)(x2 + xy + y2)(x + y) - 2(x6 - y6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = ( x - 2y )3 + ( x + 2y )3 - 2x ( x2 + y )=
= x3 - 6x2y + 12xy2 - 8y3 + x3 + 6x2y + 12xy2 + 8y3 - 2x3 - 2xy
= 24xy2 - 2xy
b) B = ( x - 1 )( x + y ) ( x - y ) - x2( x - 1 )=
= ( x -1 )( x2 - y2 ) - x2 ( x - 1 )
= ( x - 1 )( x2 - y2 - x2 )
= -y2 ( x - 1 )
c ) C = ( x + 2)2 - 2( x + 2 )( x - 8 ) + ( x - 8 ) 2 =
= ( x + 2 - x + 8 ) 2
= 102
= 100
HOk tốt!!!!!!!!!!
Bài 2 : a) \(2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
b) \(2\left(2x-1\right)+6x\left(2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(2+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2+6x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\6x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{2}{6}=-\frac{1}{3}\end{cases}}}\)
c) \(\left(x-3\right)^2-\left(2x+6\right)^2=0\Leftrightarrow\left(x-3-2x-6\right)\left(x-3+2x+6\right)=0\)
\(\Leftrightarrow\left(-x-9\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}-x-9=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}}\)
Tự KL cho các phần
Cho biểu thức P = (4x−x21−4x2 1−x):(4x2−x41−4x2 +1)
a) Rút gọn P
= (x^21+4x^2-3x)/(x^41-1)
b) Tìm x để P =< 0
b) Tìm x để P ≤0
ĐKXĐ : \(\hept{\begin{cases}x^2-2\ge0\\7-x^2\ge0\end{cases}}\Leftrightarrow\sqrt{2}\le x\le\sqrt{7}\)
Áp dụng bất đẳng thức Bunhiacopxki
Ta có N = \(\sqrt{x^2+1}+\sqrt{2\left(x^2-2\right)}+\sqrt{3\left(7-x^2\right)}\)
\(=1.\sqrt{x^2+1}+1.\sqrt{2\left(x^2-2\right)}+1.\sqrt{3\left(7-x^2\right)}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left[x^2+1+2\left(x^2-2\right)+3\left(7-x^2\right)\right]}\)
\(=\sqrt{3.18}=\sqrt{54}\)
Dấu "=" xảy ra <=> \(\frac{1}{x^2+1}=\frac{1}{2\left(x^2-2\right)}=\frac{1}{3\left(7-x^2\right)}\)
<=> x2 + 1 = 2x2 - 4
<=> x = \(\sqrt{5}\)(tm)
Vậy Max N = \(\sqrt{54}\Leftrightarrow x=\sqrt{5}\)
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Sai thi thong cam ...
\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3yz+3xz^2+3yx^2+3zx^2+3xy^2+3xyz+3zy^2+3yz^2\)
\(\Leftrightarrow\left(x+y+z\right)^3=x^3+3x^2y+3y^2x+y^3+3x^2z+6xyz+3y^2z+3xz^2+z^3\)
\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y\right)^3+3z\left(x+y\right)^2+3z^2\left(x+y\right)+z^3\)
\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y+z\right)^3\)
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
\(A=x^2+2x+9y^2-6y+2018\)
\(=x^2+2x+1+9y^2-6y+1+2016\)
\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)
Dấu ''='' xảy ra khi x = -1 ; y = 1/3
Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3
a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)
\(=y^4-16-y^4+81=65\)
b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)