\(a+b+c=0\)và \(a^2+b^2+c^2=14\) tính giá trị của B=\(a^4+b^4+c^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và EF
Xét tam giác ADC có EO //DC
=>AE/AD=AO/AC. (1)
Xét tg ABC có OF//DC
=>CF/CB=CO/CA. (2)
Từ 1 và 2=>AE/AD+CF/CB=AO/AC+CO/CA=AO+CO/AC=AC/AC=1(đpcm)
Ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=\left(\frac{a^2}{b+c}+a\right)+\left(\frac{b^2}{a+c}+b\right)+\left(\frac{c^2}{a+b}+c\right)-\left(a+b+c\right)\)
\(=a\left(\frac{a}{b+c}+1\right)+b\left(\frac{b}{a+c}+1\right)+c\left(\frac{c}{a+b}+1\right)-\left(a+b+c\right)\)
\(=a.\frac{a+b+c}{b+c}+b.\frac{a+b+c}{a+c}+c.\frac{a+b+c}{a+b}-\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(=\left(a+b+c\right)-\left(a+b+c\right)\left(\text{vì }\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\right)\)
\(=0\)(đpcm)
25 - a2 - 2ab - b2
= 25 - ( a2 + 2ab + b2 )
= 52 - ( a + b )2
= ( 5 - a - b )( 5 + a + b )
Ta có:(x-y)(x2+xy+y2)=667
Ta có 667=1.667=23.29
x-y 1 23 29 667
x2+xy+y2 667 29 23 1
x Không có Không có Không có Không có
y Không có Không có Không có Không có
Vậy không có x,y thỏa mãn
\(3\left(x^3-y^3\right)=2001\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y\right)=667\)
Ta có \(667=1\cdot667=23\cdot29\)
Vì x;y là số nguyên dương nên x-y; x2+xy+y2 nguyên mà x2+xy+y2>0 => x-y>0 => x>y
Ta có các trường hợp sau:
TH1: \(\hept{\begin{cases}x-y=23\\x^2+xy+y^2=29\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=23\\\left(x-y\right)^2+3xy=29\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=23\\23^2+3xy=29\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=23\\xy=\frac{-500}{3}\end{cases}}}\)(loại)
TH2: \(\hept{\begin{cases}x-y=29\\x^2+xy+y^2=23\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=29\\\left(x-y\right)^2+3xy=23\end{cases}}}\)(loại)
TH3: \(\hept{\begin{cases}x-y=667\\x^2+xy+y^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=667\\\left(x-y\right)^2+3xy=1\end{cases}}}\)(loại)
TH4: \(\hept{\begin{cases}x-y=1\\x^2+xy+y^2=667\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=1\\\left(x-y\right)^2+3xy=667\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=1\\xy=222\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y+1\\xy=222\end{cases}}}\)
\(\Rightarrow y\left(y+1\right)=222\)\(\Leftrightarrow y=\frac{-1+\sqrt{889}}{2}\)(loại)
Vậy phương trình vô nghiệm
Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)
Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)
Khi đó :
\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Ta có bất đẳng thức mới theo ẩn x,y,z :
\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)
Ta chứng minh bất đẳng thức phụ sau :
\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)
Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))
Áp dụng , ta được :
\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)
Vậy bất đẳng thức được chứng minh
Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)
Khi đó:
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}\)
\(=\frac{a\left(a+c\right)+2ac}{2a\left(a+c\right)-2ac}+\frac{c\left(a+c\right)+2ac}{2c\left(a+c\right)-2ac}\)
\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=\frac{a^2}{2a^2}+\frac{3ac}{2a^2}+\frac{c^2}{2c^2}+\frac{3ac}{2c^2}\)
\(=\frac{1}{2}+\frac{3c}{2a}+\frac{1}{2}+\frac{3a}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\ge1+\frac{3}{2}\cdot2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=1+3=4\) (Cauchy)
Dấu "=" xảy ra khi: \(a=b=c\)
1) Ta có a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> a-b = 0 và b-c=0 và c-a=0
<=> a=b=c
a^2/b+c + b^2/a+c + c^2=a+b
= a(a/b+c) + b(b/a+c) + c(c/a+b)
= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)
= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c
= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)
mà a/b+c + b/a+c + c/a+b = 1
= a+b+c - (a+b+c)
= 0