Cho tam giác EFH. G là trọng tâm của tam giác EFH. Ta có:
a) \(S_{GEF}=S_{GFH}+S_{GEH}\) b)\(S_{GFH}=S_{GEF}+S_{GEH}\)
c)\(S_{GEH}=S_{GEF}+S_{GFH}\)
Bài này là chọn đáp án đúng nhưng mọi người giải giúp mình nhé!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+12\right)\left(3x-3\right)=\left(3x+12\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3\right)-\left(3x+12\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3-4x+5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(-x+2\right)=0\Leftrightarrow x=-4;x=2\)
Vậy tập nghiệm của phương trình là S = { -4 ; 2 }
( 3x + 12 )( 3x - 3 ) = ( 3x + 12 )( 4x - 5 )
<=> 9( x + 4 )( x - 1 ) - 3( x + 4 )( 4x - 5 ) = 0
<=> 3( x + 4 )[ 3( x - 1 ) - ( 4x - 5 ) ] = 0
<=> 3( x + 4 )( 3x - 3 - 4x + 5 ) = 0
<=> 3( x + 4 )( 2 - x ) = 0
<=> x = -4 hoặc x = 2
Vậy phương trình có tập nghiệm S = { -4 ; 2 }
Thực hiện phép tính hay giải PT ạ ?Nếu là giải PT thì đề thiếu ạ ?
x^3 - 4x^2 +5x=0
<=> x^3 +x^2 - 5x^2 +5x = 0
<=>x^2.(x+1) - 5x.(x+1) = 0
<=>(x+1) .(x^2- 5x) = 0
<=>(x+1) .x(x- 5) = 0
TH1: x=0
TH2: x+1=0 => x= -1
TH3: x-5=0 => x=5
Vậy ....
x^ 3 - 4x^2 +5x=0
=> x (x^2 - 4x+5) = 0
Đến đây rút ra x =0