Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh:
a, \(\frac{EB}{FC}=\left(\frac{AB}{AC}\right)^3\)
b, \(\frac{1}{BK^2}=\frac{1}{BC^2}=\frac{1}{4HA^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K N 5 12
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
A B C H
Xét tam giác vuông AHB và CHA có :
góc AHB = góc CHA = 90độ
góc ABH = góc CAH ( cùng phụ với góc C )
Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )
Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\) ( 1 )
Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )
Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )
Vậy BH = 9cm , HC = 16cm
Học tốt
\(ĐKXĐ:x\ge4\)
\(\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4}=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}-\sqrt{x-4}\)
\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.2\sqrt{x-4}+2^2}-\sqrt{x-4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}-\sqrt{x-4}=\left|\sqrt{x-4}+2\right|-\sqrt{x-4}\)
\(=\sqrt{x-4}+2-\sqrt{x-4}=2\)( vì \(x\ge4\)nên \(\sqrt{x-4}\ge0\))