Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác MKN và tam giác MKO có
MK chung
MN = MO ( cmt)
\(\widehat{NMK}=\widehat{OMK}\) ( do MK là tia phân giác )
=> tam giác MKN = tam giác MKO (c-g-c)
b, Do tam giác MKN = tam giác MKO (cmt)
=> KN = KO
c, Do MK là trung điểm NO
mà MK cách đều hai điểm N và O
=> MK là đường trung trực
=> MK vuông góc với NO
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
a) Xét ΔBAD và ΔBED vuông lần lượt tại A và E có :
BD : cạnh chung
góc ABD = góc EBD ( DB là tia phân giác của góc B )
Do đó : ΔBAD=ΔBED ( c.h-g.n )
suy ra : BA = BE ( 2 cạnh tương ứng )
b) Ta có : BA = BE ( cmt )
DA = DE ( ΔBAD=ΔBED )
suy ra : BD là đường trung trực của AE
suy ra : BD vuông góc với AE (1)
Xét ΔBFD và ΔBCD vuông tại F và E có :
góc B : chung
BE=BA (cmt)
do đó : ΔBFD=ΔBCD ( c.g.v-g.n.k )
suy ra : BC = BF
Xét ΔBDF và ΔBDC có :
BC=BF ( cmt )
góc FBD = góc CBD ( BD là tia phân giác của góc B )
BD : chung
do đó : hai tam giác trên bằng nhau theo trường hơp ( c-g-c )
suy ra : DF=DC ( 2 cạnh tương ứng )
ta có : DF=DC ; BC=BF
suy ra : BD là đường trung trực của CF
suy ra : BD vuông CF (2)
Từ (1) và (2) suy ra : đpcm
a) Xét tam giác ABD và EBD có
góc BAD=BED=900(gt)
góc ABD=EBD(BD là phân giác)
BD chung
=>tam giác ABD = tam giác EBD( cạnh huyền - góc nhọn )
=>BA=BE( 2 cạnh tương ứng )
b)Có BA=BE => tam giác BAE cân tại B
mà BD là tia phần giác góc B => BD là đường cao => BD vuông góc AE
Có tam giác ABD = tam giác EBD => AD=ED (2 cạnh tương ứng)
Xét tam giác ADF và EDC có
góc DAF=DEC=90o(gt)
góc FAD=EDC (2 góc đối đỉnh)
AD=ED (cmt)
=>tam giác ADF = tam giác EDC(cgv-gnk)
=>AF=EC ( 2 cạnh tương ứng)
có BF=AF+AB; BC=CE+EB
mà AF=EC, AB=EB => BF=BC => tam giác FBC cân tại B
mà BD là tia phân giác => BD là đường cao => BD vuông góc CF
mà BD vuông góc với AE
=> AE song song CF
Lấy sao cho mà nên
cân có nên là tam giác đều suy ra
Thấy (góc ngoài tại đỉnh của tam giác ) nên
Suy ra (hai góc tương ứng bằng nhau) và (hai cạnh tương ứng)
Lại có nên
cân tại có nên nó là tam giác đều.
Đây nhé!
a) Có 817 - 279 + 329
= (34)7 - (33)9 + 329
= 328 - 327 + 329
= 327(3 - 1 + 32)
= 327.11 = 326.33 \(⋮33\)
b) 911 - 910 - 99
= 99(92 - 9 - 1)
= 99.71
= 98.639 \(⋮639\)
c) P = 3636 - 92000
Có 3636 = \(\overline{....6}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}=\overline{.....1}\)
nên P = \(\overline{...6}-\overline{...1}=\overline{...5}\Rightarrow P⋮5\)
dễ thấy P \(⋮9\) mà (5;9) = 1
nên \(P⋮9.5=45\)
A = \(2^2.\left(1^2+2^2+3^2+...+10^2\right)=4.385=1540\)
B=\(3^2.\left(1^2+2^2+3^2+...+10^2\right)=385.9=3465\)
a) \(\dfrac{x}{y}=\dfrac{1}{3}\Rightarrow y=3x\). Thay vào biểu thức N, ta có: \(N=\dfrac{x-3x}{x+9x}=\dfrac{-2x}{10x}=-\dfrac{1}{5}\)
b) \(x+y+1=0\Leftrightarrow x+y=-1\). Thay vào biểu thức M, ta có: \(M=\left(-1\right)^2-y^3\left(-1\right)+x^2-y^3+3\) \(=1+y^3+x^2-y^3+3\) \(=x^2+4\)
`x/(y+z+1)(1)`
`y/(x+z+2)(2)`
`z/(x+y-3)(3)`
Xét TH1 : `x+y+z ne 0`
Áp dụng tính chất dãy tỉ số bằng nhau
`x/(y+z+1)=y/(x+z+2)=z/(x+y-3)=(x+y+z)/(y+z+1+x+z+2+x+y-3)`
`= (x+y+z)/(2x+2y+2z)= 1/2`
`=> x+y+z =1/2`
`=> {(y+z=1/2-x),(x+z=1/2-y),(x+y=1/2-z):}`
Thay `y+z=1/2-x` vào (1) ta giải ra đc
`x = 1/2`
làm tg tự ta có
`y=5/6 ; z = -5/6`
Xét `TH2:x+y+z =0`
`=> x/(y+z+1)=y/(x+z+2)=z/(x+y-3)=x+y+z =0`
`=> x=y=z =0 `
:0