K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

loading...

28 tháng 11 2023

loading...

a) \(\sqrt{ }\)20 + 2\(\sqrt{ }\)45 - 3\(\sqrt{ }\)80 + \(\sqrt{ }\)125

\(\sqrt{ }\)4.5 +2\(\sqrt{ }\)9.5 - 3\(\sqrt{16.5}\)

= 2\(\sqrt{5}\) + 6\(\sqrt{5}\) - 12\(\sqrt{5}\)

= -4\(\sqrt{5}\)

b) \(\dfrac{2\sqrt{3}+3\sqrt{2}}{\sqrt{3}+\sqrt{2}}\) - \(4\sqrt{\dfrac{3}{2}}\)\(\dfrac{5}{1-\sqrt{6}}\)

\(\dfrac{2\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)\(\sqrt{16.\dfrac{3}{2}}\) - \(\dfrac{5\left(1+\sqrt{6}\right)}{\left(1-\sqrt{6}\right)\left(1+\sqrt{6}\right)}\)

= 2 - \(\sqrt{24}\) - \(\dfrac{5\left(1+\sqrt{6}\right)}{1-6}\)

= 2 - \(\sqrt{4.6}\) + 1+\(\sqrt{ }\)6

= 2 - 2\(\sqrt{ }\)6 + 1+\(\sqrt{ }\)6

= 3 - \(\sqrt{ }\)6

c) (đề bài) với x khác 4...

\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)\(\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)- ....

\(x-4\sqrt{x}+4\)\(\sqrt{x}\left(\sqrt{x}-2\right)\)

= (căn -2)2/ căn x(căn x -2)

= căn x-2/căn x

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

** Bổ sung điều kiện $n$ là số nguyên.

$n^2+9n-2\vdots 11$

$\Leftrightarrow n^2+9n-2+22\vdots 11$

$\Leftrightarrow n^2+9n+20\vdots 11$

$\Leftrightarrow (n+4)(n+5)\vdots 11$

$\Rightarrow n+4\vdots 11$ hoặc $n+5\vdots 11$

$\Rightarrow n=11k-4$ hoăc $11k-5$ với $k$ là số nguyên bất kỳ.

26 tháng 11 2023

Đề bị lỗi công thức rồi em nhé!

AH
Akai Haruma
Giáo viên
26 tháng 11 2023

Lời giải:

Gọi đường thẳng cần tìm là $(d): y=ax+b$. 

Vì $A\in (d)\Rightarrow y_A=ax_A+b$

$\Rightarrow 0=-2a+b(1)$

Vì $B\in (d)\Rightarrow y_B=ax_B+b$

$\Rightarrow -1=0.a+b(2)$

Từ $(1); (2)\Rightarrow b=-1; a=\frac{-1}{2}$

Vậy ptđt cần tìm là $y=\frac{-1}{2}x-1$

26 tháng 11 2023

 Đặt lên cân đĩa mỗi bên 4 đồng tiền vàng nếu hai bên bằng nhau thì đồng tiền giả là đồng tiền chưa cân còn lại. Nếu hai bên cân có bên nào nhẹ hơn thì bên đó có chứa tiền giả

Lấy 4 đồng tiền có chứa tiền giả đó cân trên cân đĩa mỗi bên cân đặt hai đồng, bên nào nhẹ hơn thì bên đó có chứa tiền giả.

Lấy 2 đồng tiền có chứa tiền giả đó ra cân trên cân đĩa mỗi bên đặt một đồng nếu bên nào nhẹ hơn thì bên đó có đồng tiền giả

Vậy ta đã có thể lấy ra tiền giả sau số lần cân ít nhất theo cách trên. 

30 tháng 11 2023

Cảm ơn cô ạ

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:

$ab^2=b-a-1$

$\Leftrightarrow ab^2+a+1-b=0$

$\Leftrightarrow a(b^2+1)+(1-b)=0$

$\Leftrightarrow a=\frac{b-1}{b^2+1}$

Để $a$ nguyên thì $b-1\vdots b^2+1$

$\Rightarrow b^2-b\vdots b^2+1$

$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$

$\Rightarrow b+1\vdots b^2+1$

Kết hợp với $b-1\vdots b^2+1$

$\Rightarrow (b+1)-(b-1)\vdots b^2+1$

$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm) 

Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$

Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)

Với $b=-1$ thì $a=-1$

Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)

26 tháng 11 2023

\(y=\left(m-1\right)^2+2\left(d\right)\)

a) (d) đi qua A(1; 1)

\(\Rightarrow\)x=1; y=1

Thay x=1; y=1 vào (d)

\(\Rightarrow\) \(\left(m-1\right)^2\times1+2=1\)

\(\Leftrightarrow\left(m-1\right)^2=-1\)(vô lí)

Vậy ko có m để (d) đi qua A(1; 1)