K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAD vuông tại A và ΔCHD vuông tại H có

CD chung

\(\widehat{ACD}=\widehat{HCD}\)

Do đó: ΔCAD=ΔCHD

=>CA=CH

b: Ta có: ΔCAD=ΔCHD

=>DA=DH

=>D nằm trên đường trung trực của AH(1)

Ta có: CA=CH

=>C nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra CD là đường trung trực của AH

=>CD\(\perp\)AH tại I và I là trung điểm của AH

c: GI=1/2GB

=>BG=2GI

=>\(\dfrac{BG}{BI}=\dfrac{2}{3}\)

Xét ΔHAB có

BI là đường trung tuyến

\(BG=\dfrac{2}{3}BI\)

Do đó: G là trọng tâm của ΔHAB

Xét ΔHAB có

G là trọng tâm

K là trung điểm của AB

DO đó: H,K,G thẳng hàng

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-60^0=30^0\)

b: Sửa đề; BE là phân giác của góc B

Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó: ΔBAE=ΔBHE

=>\(\widehat{ABE}=\widehat{HBE}\)

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

CA,KH là các đường cao

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC

=>BE\(\perp\)KC

d: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}=\dfrac{1}{2}\)

nên \(\widehat{B}=60^0\)

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
Do đó: ΔAHD=ΔAED

=>\(\widehat{HAD}=\widehat{EAD}\)

=>AD là phân giác của góc HAC

b: ΔAHD=ΔAED

=>DH=DE

Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDHK=ΔDEC

=>DK=DC

=>ΔDKC cân tại D

4 tháng 5

Giúp mình với ạ!!!!

 

a: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

Do đó: ΔABC=ΔADC

b: Xét ΔACD vuông tại A và ΔAEB vuông tại A có

AC=AE

AD=AB

Do đó: ΔACD=ΔAEB

=>\(\widehat{ACD}=\widehat{AEB}\)

=>CD//EB

c:

Xét ΔBCE có

BA là đường cao

BA là đường trung tuyến

Do đó ΔBCE cân tại B

=>BC=BE

Xét ΔDBC có

I,A lần lượt là trung điểm của CD,DB

=>IA là đường trung bình của ΔDBC

=>\(IA=\dfrac{CB}{2}\)

=>CB=2IA

mà CB=BE

nên BE=2IA

a: \(A\left(x\right)=-4x^2-2x-8+5x^3-7x^2+1\)

\(=5x^3+\left(-4x^2-7x^2\right)+\left(-2x\right)+\left(-8+1\right)\)

\(=5x^3-11x^2-2x-7\)

\(B\left(x\right)=-3x^3+4x^2+9+x-2x-2x^3\)

\(=\left(-3x^3-2x^3\right)+4x^2+\left(x-2x\right)+9\)

\(=-5x^3+4x^2-x+9\)

b: \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(=5x^3-11x^2-2x-7-5x^3+4x^2-x+9\)

\(=-7x^2-3x+2\)

N(x)=A(x)-B(x)

\(=5x^3-11x^2-2x-7+5x^3-4x^2+x-9\)

\(=10x^3-15x^2-x-16\)

c: \(M\left(2\right)=-7\cdot2^2-3\cdot2+2=-28-6+2=-32< >0\)

=>x=2 không là nghiệm của M(x)

\(N\left(2\right)=10\cdot2^3-15\cdot2^2-2-16=80-60-18=2>0\)

=>x=2 không là nghiệm của N(x)

4 tháng 5

Ta có: \(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau và \(x-2y+z=14\), ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{2y}{\dfrac{2}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x-2y+z}{\dfrac{1}{2}-\dfrac{2}{3}+\dfrac{1}{5}}=\dfrac{14}{\dfrac{1}{30}}=420\)

\(\Rightarrow\left\{{}\begin{matrix}x=420\cdot\dfrac{1}{2}=210\\y=420\cdot\dfrac{1}{3}=140\\z=420\cdot\dfrac{1}{5}=84\end{matrix}\right.\)

$\text{#}Toru$

NV
4 tháng 5

\(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{z}{6}=\dfrac{x-2y+z}{15-20+6}=\dfrac{14}{1}=14\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.14=210\\y=10.14=140\\z=6.14=84\end{matrix}\right.\)

vẽ hình hộ mình nhé đang cần gấp

 

4 tháng 5

nhớ tích cho tui nhe