Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-60^0=30^0\)
b: Sửa đề; BE là phân giác của góc B
Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó: ΔBAE=ΔBHE
=>\(\widehat{ABE}=\widehat{HBE}\)
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
CA,KH là các đường cao
KH cắt CA tại E
Do đó: E là trực tâm của ΔBKC
=>BE\(\perp\)KC
d: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}=\dfrac{1}{2}\)
nên \(\widehat{B}=60^0\)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
Do đó: ΔAHD=ΔAED
=>\(\widehat{HAD}=\widehat{EAD}\)
=>AD là phân giác của góc HAC
b: ΔAHD=ΔAED
=>DH=DE
Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDHK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét ΔACD vuông tại A và ΔAEB vuông tại A có
AC=AE
AD=AB
Do đó: ΔACD=ΔAEB
=>\(\widehat{ACD}=\widehat{AEB}\)
=>CD//EB
c:
Xét ΔBCE có
BA là đường cao
BA là đường trung tuyến
Do đó ΔBCE cân tại B
=>BC=BE
Xét ΔDBC có
I,A lần lượt là trung điểm của CD,DB
=>IA là đường trung bình của ΔDBC
=>\(IA=\dfrac{CB}{2}\)
=>CB=2IA
mà CB=BE
nên BE=2IA
a: \(A\left(x\right)=-4x^2-2x-8+5x^3-7x^2+1\)
\(=5x^3+\left(-4x^2-7x^2\right)+\left(-2x\right)+\left(-8+1\right)\)
\(=5x^3-11x^2-2x-7\)
\(B\left(x\right)=-3x^3+4x^2+9+x-2x-2x^3\)
\(=\left(-3x^3-2x^3\right)+4x^2+\left(x-2x\right)+9\)
\(=-5x^3+4x^2-x+9\)
b: \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=5x^3-11x^2-2x-7-5x^3+4x^2-x+9\)
\(=-7x^2-3x+2\)
N(x)=A(x)-B(x)
\(=5x^3-11x^2-2x-7+5x^3-4x^2+x-9\)
\(=10x^3-15x^2-x-16\)
c: \(M\left(2\right)=-7\cdot2^2-3\cdot2+2=-28-6+2=-32< >0\)
=>x=2 không là nghiệm của M(x)
\(N\left(2\right)=10\cdot2^3-15\cdot2^2-2-16=80-60-18=2>0\)
=>x=2 không là nghiệm của N(x)
Ta có: \(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x-2y+z=14\), ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{2y}{\dfrac{2}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x-2y+z}{\dfrac{1}{2}-\dfrac{2}{3}+\dfrac{1}{5}}=\dfrac{14}{\dfrac{1}{30}}=420\)
\(\Rightarrow\left\{{}\begin{matrix}x=420\cdot\dfrac{1}{2}=210\\y=420\cdot\dfrac{1}{3}=140\\z=420\cdot\dfrac{1}{5}=84\end{matrix}\right.\)
$\text{#}Toru$
\(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{z}{6}=\dfrac{x-2y+z}{15-20+6}=\dfrac{14}{1}=14\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.14=210\\y=10.14=140\\z=6.14=84\end{matrix}\right.\)
a: Xét ΔCAD vuông tại A và ΔCHD vuông tại H có
CD chung
\(\widehat{ACD}=\widehat{HCD}\)
Do đó: ΔCAD=ΔCHD
=>CA=CH
b: Ta có: ΔCAD=ΔCHD
=>DA=DH
=>D nằm trên đường trung trực của AH(1)
Ta có: CA=CH
=>C nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra CD là đường trung trực của AH
=>CD\(\perp\)AH tại I và I là trung điểm của AH
c: GI=1/2GB
=>BG=2GI
=>\(\dfrac{BG}{BI}=\dfrac{2}{3}\)
Xét ΔHAB có
BI là đường trung tuyến
\(BG=\dfrac{2}{3}BI\)
Do đó: G là trọng tâm của ΔHAB
Xét ΔHAB có
G là trọng tâm
K là trung điểm của AB
DO đó: H,K,G thẳng hàng